Neural networks have shown state-of-the-art performance in designing auctions, where the network learns the optimal allocations and payment rule to ensure desirable properties. Motivated by the same, we focus on learning fair division of resources, with no payments involved. Our goal is to allocate the items, goods and/or chores efficiently among the fair allocations. By fair, we mean an allocation that is Envy-free (EF). However, such an allocation may not always exist for indivisible resources. Therefore, we consider the relaxed notion, Envy-freeness up to one item (EF1) that is guaranteed to exist. However, it is not enough to guarantee EF1 since the allocation of empty bundles is also EF1. Hence, we add the further constraint of efficiency, maximum utilitarian social welfare (USW). In general finding, USW allocations among EF1 is an NP-Hard problem even when valuations are additive. In this work, we design a network for this task which we refer to as EEF1-NN. We propose an UNet inspired architecture, Lagrangian loss function, and training procedure to obtain desired results. We show that EEF1-NN finds allocation close to optimal USW allocation and ensures EF1 with a high probability for different distributions over input valuations. Compared to existing approaches EEF1-NN empirically guarantees higher USW. Moreover, EEF1-NN is scalable and determines the allocations much faster than solving it as a constrained optimization problem.


翻译:内建网络在设计拍卖时表现出了最先进的表现。 内建网络在设计拍卖时学习了最佳分配和支付规则以确保理想的属性。 受同样的激励,我们侧重于学习公平分配资源,而不涉及支付。 我们的目标是在公平分配中高效分配项目、货物和(或)杂务。 公平地说,我们指的是无损(EF)分配。 但是,这种分配可能并不总是存在于不可分割的资源上。 因此,我们认为宽松的概念,即自由程度最高为保证存在的一个项目(EF1),但不足以保证EF1。 然而,由于空捆包的分配也是EF1。 因此,我们增加了效率、最大功用性社会福利(USW)的进一步限制。 一般地发现,EF1中的USW分配是一个NP-Hard问题,即使估值是累加的。 在这项工作中,我们称之为EEF1-NNN。 我们建议一个受联合国启发的架构,Lagranchian损失功能,培训程序也不足以保证EFEFA的近似分配结果。 我们证明EF1的EFA- NEF值比EF更精确地确定EFA值。

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
最新《深度学习理论》笔记,68页pdf
专知会员服务
50+阅读 · 2021年2月14日
【NeurIPS2020-MIT】子图神经网络,Subgraph Neural Networks
专知会员服务
46+阅读 · 2020年9月28日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
73+阅读 · 2020年8月2日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
【快讯】CVPR2020结果出炉,1470篇上榜, 你的paper中了吗?
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
计算机视觉的不同任务
专知
5+阅读 · 2018年8月27日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
最佳实践:深度学习用于自然语言处理(三)
待字闺中
3+阅读 · 2017年8月20日
Arxiv
0+阅读 · 2022年2月15日
Arxiv
19+阅读 · 2018年6月27日
VIP会员
相关VIP内容
最新《深度学习理论》笔记,68页pdf
专知会员服务
50+阅读 · 2021年2月14日
【NeurIPS2020-MIT】子图神经网络,Subgraph Neural Networks
专知会员服务
46+阅读 · 2020年9月28日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
73+阅读 · 2020年8月2日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
【快讯】CVPR2020结果出炉,1470篇上榜, 你的paper中了吗?
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
计算机视觉的不同任务
专知
5+阅读 · 2018年8月27日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
最佳实践:深度学习用于自然语言处理(三)
待字闺中
3+阅读 · 2017年8月20日
Top
微信扫码咨询专知VIP会员