The brains of all bilaterally symmetric animals on Earth are divided into left and right hemispheres. The anatomy and functionality of the hemispheres have a large degree of overlap, but there are asymmetries and they specialize to possess different attributes. Several computation models mimic hemispheric asymmetries with a focus on reproducing human data on semantic and visual processing tasks. In this study, we aimed to understand how dual hemispheres in a bilateral architecture interact to perform well in a given task. We propose a bilateral artificial neural network that imitates lateralization observed in nature: that the left hemisphere specializes in specificity and the right in generalities. We used different training objectives to achieve the desired specialization and tested it on an image classification task with two different CNN backbones -- ResNet and VGG. Our analysis found that the hemispheres represent complementary features that are exploited by a network head which implements a type of weighted attention. The bilateral architecture outperformed a range of baselines of similar representational capacity that don't exploit differential specialization, with the exception of a conventional ensemble of unilateral networks trained on a dual training objective for specifics and generalities. The results demonstrate the efficacy of bilateralism, contribute to the discussion of bilateralism in biological brains and the principle may serves as an inductive bias for new AI systems.
翻译:暂无翻译