The distributed Volt/Var control (VVC) methods have been widely studied for active distribution networks(ADNs), which is based on perfect model and real-time P2P communication. However, the model is always incomplete with significant parameter errors and such P2P communication system is hard to maintain. In this paper, we propose an online multi-agent reinforcement learning and decentralized control framework (OLDC) for VVC. In this framework, the VVC problem is formulated as a constrained Markov game and we propose a novel multi-agent constrained soft actor-critic (MACSAC) reinforcement learning algorithm. MACSAC is used to train the control agents online, so the accurate ADN model is no longer needed. Then, the trained agents can realize decentralized optimal control using local measurements without real-time P2P communication. The OLDC with MACSAC has shown extraordinary flexibility, efficiency and robustness to various computing and communication conditions. Numerical simulations on IEEE test cases not only demonstrate that the proposed MACSAC outperforms the state-of-art learning algorithms, but also support the superiority of our OLDC framework in the online application.


翻译:在本文中,我们提议为VVC建立一个在线多试剂强化学习和分散控制框架(OLDC)。在这个框架内,VVC问题被设计成一个限制的Markov游戏,我们提议一种新型的多试剂软性行为者-加速强化学习算法。MACSCAC被用于在网上培训控制剂,因此准确的ADN模型不再需要。然后,经过培训的代理商可以在不实时P2P通信的情况下,利用当地测量实现分散最佳控制,而无需实时P2P通信。与MACSCAC一起的老化C在各种计算和通信条件方面表现出极大的灵活性、效率和稳健性。在IEEE测试案例中的数值模拟不仅表明拟议的MACSCAC(MACSCAC)超越了最新学习算法,而且还支持了我们在网上应用中的ASGC框架的优越性。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
【强化学习资源集合】Awesome Reinforcement Learning
专知会员服务
93+阅读 · 2019年12月23日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
已删除
德先生
53+阅读 · 2019年4月28日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
spinningup.openai 强化学习资源完整
CreateAMind
6+阅读 · 2018年12月17日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
11+阅读 · 2018年4月27日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年5月28日
Arxiv
5+阅读 · 2018年4月22日
VIP会员
相关资讯
已删除
德先生
53+阅读 · 2019年4月28日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
spinningup.openai 强化学习资源完整
CreateAMind
6+阅读 · 2018年12月17日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
11+阅读 · 2018年4月27日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员