The advent of Programmable Data Planes represents an outstanding evolution and complete revolution of the Software- Defined Networking paradigm. The capacity to define the entire behavior of forwarding devices by controlling the packet parsing procedures and executing custom operations enables offloading functionalities traditionally performed at the control plane. A recent research line has explored the possibility of even offloading to the data plane part of Artificial Intelligence algorithms, and more specifically, Machine Learning ones, to increase their accuracy and responsiveness (by having more detailed visibility of the traffic). This introduces a significant opportunity for evolution in the critical field of Intrusion Detection. However, offloading functionalities to the data plane is not a straightforward task. In this paper, we discuss how Programmable Data Planes might complement different stages of an Intrusion Detection System based on Machine Learning. We present two use cases that make evident the feasibility of this approach and highlight aspects that must be considered when addressing the challenge of deploying solutions leveraging data-plane functionalities.
翻译:可编程数据平面的出现是软件定义网络模式的杰出演变和彻底革命。通过控制包分割程序和执行定制操作来界定传输设备的整个行为的能力使得能够卸载传统上在控制平面上执行的功能。最近的一行研究探索了甚至将人工智能算法的一部分,更具体地说,机器学习算法卸载到数据平面的可能性,以提高其准确性和反应能力(通过更详细地观察交通量)。这为入侵探测的关键领域的发展提供了重要机会。然而,将功能卸载到数据平面并不是一项直接的任务。在本文件中,我们讨论了可编程数据平面上如何补充基于机器学习的入侵探测系统的不同阶段。我们提出了两个使用案例,这些案例可以证明这种方法的可行性,并突出了在应对利用数据平面功能部署解决方案的挑战时必须考虑的方面。