The reduced-rank method exploits the distortion-variance tradeoff to yield superior solutions for classic problems in statistical signal processing such as parameter estimation and filtering. The central idea is to reduce the variance of the solution at the expense of introducing a little distortion. In the context of parameter estimation, this yields an estimator whose sum of distortion plus variance is smaller than the variance of its undistorted counterpart. The method intrinsically results in an ordering mechanism for the singular vectors of the system matrix in the measurement model used for estimating the parameter of interest. According to this ordering rule, only a few \emph{dominant} singular vectors need to be selected to construct the reduced-rank solution while the rest can be discarded. The reduced-rank estimator is less sensitive to measurement errors. In this paper, we attempt to derive the reduced-rank estimator for the total least squares (TLS) problem, including the order selection rule. It will be shown that, due to the inherent structure of the problem, it is not possible to exploit the distortion-variance tradeoff in TLS formulations using existing techniques, except in some special cases. This result has not been reported previously and warrants a new viewpoint to achieve rank reduction for the TLS estimation problem. The work is motivated by the problems arising in practical applications such as channel estimation in wireless communication systems and time synchronization in wireless sensor networks.


翻译:降级方法利用扭曲- 差异权衡法,为统计信号处理(如参数估测和过滤)的典型问题提供优异的解决方案。 中心思想是减少解决方案的差异, 而不是引入一些扭曲。 在参数估测方面, 降级方法产生一个估测器, 其扭曲加差异的总和小于其非扭曲对应方的差异。 降级方法内在地导致用于估算利益参数的测量模型中系统矩阵单矢量的定序机制。 根据这项定购规则, 只需选择几个单向矢量来构建降级解决方案, 而其余的则可以丢弃。 降级估测算器对测量错误不太敏感。 在本文中, 我们试图为全部最小方( TLS) 问题的降级估测算器( 包括排序选择规则) 。 将显示, 由于问题的内在结构, 使用现有技术来构建 TLS 设置的扭曲- 置换位单矢量器, 只需要选择几个 。 降级估测算器对于测量系统来说, 在前期的SLS 度评估中, 将产生这种降级时, 将产生这样的递定级问题 。

0
下载
关闭预览

相关内容

专知会员服务
162+阅读 · 2020年1月16日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
笔记 | Sentiment Analysis
黑龙江大学自然语言处理实验室
10+阅读 · 2018年5月6日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
3+阅读 · 2017年12月14日
Arxiv
3+阅读 · 2017年10月1日
Arxiv
5+阅读 · 2015年9月14日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
笔记 | Sentiment Analysis
黑龙江大学自然语言处理实验室
10+阅读 · 2018年5月6日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员