Blockchain enables novel, trustworthy Process-Aware Information Systems (PAISs) by enforcing the security, robustness, and traceability of operations. In particular, transparency ensures that all information exchanges are openly accessible, fostering trust within the system. Although this is a desirable property to enable notarization and auditing activities, it also represents a limitation for such cases where confidentiality is a requirement since interactions involve sensible data. Current solutions rely on obfuscation techniques or private infrastructures, hindering the enforcing capabilities of smart contracts and the public verifiability of transactions. Against this background, we propose CONFETTY, an architecture for blockchain-based PAISs aimed at preserving both confidentiality and transparency. Smart contracts enact, enforce and store public interactions, while attribute-based encryption techniques are adopted to specify access grants to confidential information. We assess the security of our solution through a systematic threat model analysis and assess its practical feasibility by gauging the performance of our implemented prototype in different scenarios from the literature.
翻译:暂无翻译