Interpretability of epidemiological models is a key consideration, especially when these models are used in a public health setting. Interpretability is strongly linked to the identifiability of the underlying model parameters, i.e., the ability to estimate parameter values with high confidence given observations. In this paper, we define three separate notions of identifiability that explore the different roles played by the model definition, the loss function, the fitting methodology, and the quality and quantity of data. We define an epidemiological compartmental model framework in which we highlight these non-identifiability issues and their mitigation.
翻译:流行病学模型的可解释性是一个关键考虑因素,特别是在公共卫生环境中使用这些模型时。可解释性与基本模型参数的可识别性密切相关,即以高度自信估计参数值的能力。在本文件中,我们界定了三个不同的可识别性概念,探讨模型定义的不同作用、损失功能、适当方法以及数据的质量和数量。我们界定了一个流行病学区划模型框架,我们在此框架内强调这些不可识别性问题及其缓解。