The minimum heat cost of computation is subject to bounds arising from Landauer's principle. Here, I derive bounds on finite modelling -- the production or anticipation of patterns (time-series data) -- by devices that model the pattern in a piecewise manner and are equipped with a finite amount of memory. When producing a pattern, I show that the minimum dissipation is proportional to the information in the model's memory about the pattern's history that never manifests in the device's future behaviour and must be expunged from memory. I provide a general construction of model that allow this dissipation to be reduced to zero. By also considering devices that consume, or effect arbitrary changes on a pattern, I discuss how these finite models can form an information reservoir framework consistent with the second law of thermodynamics.
翻译:计算的最低热成本取决于Landauer原则产生的界限。在这里,我从有限模型中得出一些界限 -- -- 模式的生成或预期(时间序列数据) -- -- 由以片段方式模拟模式的装置(即时间序列数据)产生,并配有一定数量的内存。当生成一个模式时,我表明最小的分散与模型记忆中关于该模式历史的信息成比例,该模式的历史从未体现在设备的未来行为中,而且必须从记忆中去除。我提供了一个模型的一般构造,允许将这种消散减少到零。此外,通过考虑消耗或任意改变模式的装置,我讨论了这些有限模型如何形成一个符合热力第二法的信息库框架。