Learning data representations that capture task-related features, but are invariant to nuisance variations remains a key challenge in machine learning. We introduce an automated Bayesian inference framework, called AutoBayes, that explores different graphical models linking classifier, encoder, decoder, estimator and adversarial network blocks to optimize nuisance-invariant machine learning pipelines. AutoBayes also enables learning disentangled representations, where the latent variable is split into multiple pieces to impose various relationships with the nuisance variation and task labels. We benchmark the framework on several public datasets, and provide analysis of its capability for subject-transfer learning with/without variational modeling and adversarial training. We demonstrate a significant performance improvement with ensemble learning across explored graphical models.


翻译:收集任务相关特征的学习数据表述,但却对干扰性差异有不同影响,这仍然是机器学习中的一个关键挑战。我们引入了一个自动的贝叶斯推论框架,称为AutoBayes,用于探索将分类器、编码器、解码器、估计器和对抗性网络块联系起来的不同图形模型,以优化扰动性变化机器学习管道。AutoBayes还有助于学习分解的表述,其中潜在变量被分成多个部分,以强制建立与扰动变异和任务标签的各种关系。我们将该框架以若干公共数据集为基准,并分析其用/无变异型模型和对抗性培训进行主题转移学习的能力。我们展示了显著的绩效改进,在探索的图形模型中进行了共同学习。

0
下载
关闭预览

相关内容

Automator是苹果公司为他们的Mac OS X系统开发的一款软件。 只要通过点击拖拽鼠标等操作就可以将一系列动作组合成一个工作流,从而帮助你自动的(可重复的)完成一些复杂的工作。Automator还能横跨很多不同种类的程序,包括:查找器、Safari网络浏览器、iCal、地址簿或者其他的一些程序。它还能和一些第三方的程序一起工作,如微软的Office、Adobe公司的Photoshop或者Pixelmator等。
专知会员服务
43+阅读 · 2020年12月18日
专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
因果图,Causal Graphs,52页ppt
专知会员服务
247+阅读 · 2020年4月19日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
深度强化学习策略梯度教程,53页ppt
专知会员服务
179+阅读 · 2020年2月1日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
AAAI2020 图相关论文集
图与推荐
10+阅读 · 2020年7月15日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Arxiv
0+阅读 · 2021年1月16日
Arxiv
38+阅读 · 2020年12月2日
Arxiv
17+阅读 · 2019年3月28日
VIP会员
相关VIP内容
专知会员服务
43+阅读 · 2020年12月18日
专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
因果图,Causal Graphs,52页ppt
专知会员服务
247+阅读 · 2020年4月19日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
深度强化学习策略梯度教程,53页ppt
专知会员服务
179+阅读 · 2020年2月1日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
相关资讯
AAAI2020 图相关论文集
图与推荐
10+阅读 · 2020年7月15日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Top
微信扫码咨询专知VIP会员