In observational studies, we are usually interested in estimating causal effects between treatments and outcomes. When some covariates are not observed, an unbiased estimator usually cannot be obtained. In this paper, we focus on instrumental variable (IV) methods. By using IVs, an unbiased estimator for causal effects can be estimated even if there exists some unmeasured covariates. IV methods are useful, however, they sometimes suffer from weak IV and invalid IV problems. In this paper, we propose the moment type estimator which overcomes the major IV problems at once. To achieve this, we consider the situation where some auxiliary variables such as the Negative Control Outcomes can be used. One of the important points of our proposed method is that there are no necessity to specify not only the set of valid IVs but also the proportion of them in advance: this point is different from previous methods. We prove the proposed estimator has the same asymptotic variance as Generalized Method of Moments; the semiparametric efficiency. Also, we confirm properties of our method and previous methods through simulations.


翻译:在观察研究中,我们通常有兴趣估计治疗和结果之间的因果关系。 当没有观察到某些共变时, 通常无法获得公正的估计符。 在本文中, 我们侧重于工具变量( IV) 方法 。 使用 IV, 可以估计因果关系的公正估计符, 即使存在一些未测量的共变数 。 但是, IV 方法有时有用, 它们有时会遇到四类和无效的四类问题 。 在本文中, 我们建议了能够同时克服四类主要问题的瞬间估计符。 为了实现这一目标, 我们考虑了某些辅助变量( 如负控制结果 ) 可以使用的情况 。 我们建议的方法的一个重要点是, 不仅没有必要指定有效的四类, 也没有必要事先指定其比例 : 这一点与以前的方法不同 。 我们证明提议的估计符与通用的调控方法有相同的抽象差异 ; 半对称效率 。 此外, 我们通过模拟来确认我们的方法和先前方法的特性 。

0
下载
关闭预览

相关内容

专知会员服务
51+阅读 · 2020年12月14日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员