We present FourierNet a single shot, anchor-free, fully convolutional instance segmentation method, which predicts a shape vector that is converted into contour points using a numerical transformation. Compared to previous methods, we introduce a new training technique, where we utilize a differentiable shape decoder, which achieves automatic weight balancing of the shape vector's coefficients. Fourier series was utilized as a shape encoder because of its coefficient interpretability and fast implementation. By using its lower frequencies we were able to retrieve smooth and compact masks. FourierNet shows promising results compared to polygon representation methods, achieving 30.6 mAP on the MS COCO 2017 benchmark. At lower image resolutions, it runs at 26.6 FPS with 24.3 mAP. It achieves 23.3 mAP using just 8 parameters to represent the mask, which is double the amount of parameters to predict a bounding box. Code will be available at: github.com/cogsys-tuebingen/FourierNet.
翻译:我们提出FourierNet 单一的、无锚的、完全进化的实例分割法,该方法预测一个形状矢量将使用数字转换,转换成等距点。与以前的方法相比,我们采用了一种新的培训技术,我们使用不同的形状解码器,实现形状矢量系数的自动加权平衡。 Fourier 序列因其系数可解释性和快速实施而被用作形状编码器。通过使用较低的频率,我们得以检索光滑和紧凑的面罩。FourierNet显示与多边形表示法相比,取得了有希望的结果,在MS COCO 2017基准上实现了30.6 mAP。在较低的图像分辨率下,它运行在26.6 FPS,24.3 mAP。它实现了23.3 mAP,仅使用8个参数来代表面罩,这是预测捆绑框的参数的两倍。代码将在以下网站提供: guthhub.com/cogsy-tuebingen/FourierNet。