We present GLSL implementations of Perlin noise and Perlin simplex noise that run fast enough for practical consideration on current generation GPU hardware. The key benefits are that the functions are purely computational, i.e. they use neither textures nor lookup tables, and that they are implemented in GLSL version 1.20, which means they are compatible with all current GLSL-capable platforms, including OpenGL ES 2.0 and WebGL 1.0. Their performance is on par with previously presented GPU implementations of noise, they are very convenient to use, and they scale well with increasing parallelism in present and upcoming GPU architectures.


翻译:我们展示了Perlin噪音和Perlin 简单噪音的GLSL实施速度足够快,以实际考虑当前一代的 GPU 硬件。 关键的好处是这些功能纯粹是计算性的, 即它们既不使用纹理,也不使用查看表, 并且这些功能在 GLSL 1. 20 版本中执行, 这意味着它们与当前所有GLSL有能力的平台兼容, 包括 OpenGL ES 2. 0 和 WebGL 1. 0 。 它们的表现与以前提供的 GPU 实施噪音的功能相同, 它们非常方便使用, 并且它们的规模与当前和即将出现的 GPU 结构中日益增加的平行性相当。

0
下载
关闭预览

相关内容

Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
153+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
Universal Transformers
Arxiv
5+阅读 · 2019年3月5日
Accelerated Methods for Deep Reinforcement Learning
Arxiv
6+阅读 · 2019年1月10日
Efficient and Effective $L_0$ Feature Selection
Arxiv
5+阅读 · 2018年8月7日
Arxiv
3+阅读 · 2018年3月13日
Arxiv
3+阅读 · 2018年1月31日
Arxiv
3+阅读 · 2017年10月1日
VIP会员
相关资讯
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
相关论文
Universal Transformers
Arxiv
5+阅读 · 2019年3月5日
Accelerated Methods for Deep Reinforcement Learning
Arxiv
6+阅读 · 2019年1月10日
Efficient and Effective $L_0$ Feature Selection
Arxiv
5+阅读 · 2018年8月7日
Arxiv
3+阅读 · 2018年3月13日
Arxiv
3+阅读 · 2018年1月31日
Arxiv
3+阅读 · 2017年10月1日
Top
微信扫码咨询专知VIP会员