In this paper, we study the three-node Decode-and-Forward (D&F) relay network subject to random and burst packet erasures. The source wishes to transmit an infinite stream of packets to the destination via the relay. The three-node D&F relay network is constrained by a decoding delay of T packets, i.e., the packet transmitted by the source at time i must be decoded by the destination by time i+T. For the individual channels from source to relay and relay to destination, we assume a delay-constrained sliding-window (DCSW) based packet-erasure model that can be viewed as a tractable approximation to the commonly-accepted Gilbert-Elliot channel model. Under the model, any time-window of width w contains either up to a random erasure or else erasure burst of length at most b (>= a). Thus the source-relay and relay-destination channels are modeled as (a_1, b_1, w_1, T_1) and (a_2, b_2, w_2, T_2) DCSW channels. We first derive an upper bound on the capacity of the three-node D&F relay network. We then show that the upper bound is tight for the parameter regime: max{b_1, b_2}|(T-b_1-b_2-max{a_1, a_2}+1), a1=a2 OR b1=b2 by constructing streaming codes achieving the bound. The code construction requires field size linear in T, and has decoding complexity equivalent to that of decoding an MDS code.


翻译:在本文中, 我们研究以随机和爆裂的封包消除为条件的三节解码和前置( D&F) 中继网络 。 源希望通过中继向目的地传输无限的包流。 三节D & F 中继网络受到T包解码延迟的限制, 即源在时间i 上传输的包必须由目的地在时间 +T 上解码。 从源到中继和中继到目的地的单个频道, 我们假设一个基于延迟限制的滚动窗口( DCS) 的包- 范围模式, 可以通过中继向普通接受的 Gilbert- Elliot 频道模式传递无限的包流。 在模式下, 宽度的任何时间- 窗口都包含随机的破译或其它时间的缩缩略时间 i+T+T 。 因此, 源- 和中继和中继的频道以 (a_ 1, b_ 1, w_ 1, T_ 1) 和 (a_ 2, b_ 2, t_ 2, T_ 等等等 等的 等 级系统显示我们第一个捆绑定的 Serview. b 的系统 的系统系统系统显示的系统显示的上显示 a a a a- b_ b_ b_ b_ b_ AS AS 的系统显示 a AS 的高级系统显示的系统显示 a stral sal sal str str stral sal stral 的系统 的系统 的系统 的系统 的系统 的系统的系统的系统 的 。

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
0+阅读 · 2023年1月31日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员