Reproducibility is an ideal that no researcher would dispute "in the abstract", but when aspirations meet the cold hard reality of the academic grind, reproducibility often "loses out". In this essay, I share some personal experiences grappling with how to operationalize reproducibility while balancing its demands against other priorities. My research group has had some success building a "culture of reproducibility" over the past few years, which I attempt to distill into lessons learned and actionable advice, organized around answering three questions: why, what, and how. I believe that reproducibility efforts should yield easy-to-use, well-packaged, and self-contained software artifacts that allow others to reproduce and generalize research findings. At the core, my approach centers on self interest: I argue that the primary beneficiaries of reproducibility efforts are, in fact, those making the investments. I believe that (unashamedly) appealing to self interest, augmented with expectations of reciprocity, increases the chances of success. Building from repeatability, social processes and standardized tools comprise the two important additional ingredients that help achieve aspirational ideals. The dogfood principle nicely ties these ideas together.


翻译:在这份论文中,我分享了一些个人经验,在如何操作再复制的同时,在与其他优先事项之间保持平衡。我的研究小组在过去几年中成功地建立了“再复制文化”,我试图将这种文化归纳为经验教训和可采取行动的建议,围绕回答三个问题来组织:为什么、什么和如何。我认为再复制努力应该产生易于使用、包装完善和自成一体的软件工艺品,使其他人能够复制和普及研究成果。在核心方面,我的方法基于自我利益:我认为,再复制努力的主要受益者事实上是那些进行投资的人。我认为,(不一定)通过对等的期待来提高自身利益,从而增加成功的机会。从重复性、社会进程和标准化工具中积累了有助于实现理想的另外两个重要要素。教条食品原则将这些想法紧密地联系在一起。

0
下载
关闭预览

相关内容

迄今为止,产品设计师最友好的交互动画软件。

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
167+阅读 · 2020年3月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Arxiv
31+阅读 · 2022年2月15日
Arxiv
11+阅读 · 2018年7月31日
A Multi-Objective Deep Reinforcement Learning Framework
VIP会员
相关VIP内容
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
167+阅读 · 2020年3月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员