Neural networks are known for their ability to detect general patterns in noisy data. This makes them a popular tool for perception components in complex AI systems. Paradoxically, they are also known for being vulnerable to adversarial attacks. In response, various methods such as adversarial training, data-augmentation and Lipschitz robustness training have been proposed as means of improving their robustness. However, as this paper explores, these training methods each optimise for a different definition of robustness. We perform an in-depth comparison of these different definitions, including their relationship, assumptions, interpretability and verifiability after training. We also look at constraint-driven training, a general approach designed to encode arbitrary constraints, and show that not all of these definitions are directly encodable. Finally we perform experiments to compare the applicability and efficacy of the training methods at ensuring the network obeys these different definitions. These results highlight that even the encoding of such a simple piece of knowledge such as robustness in neural network training is fraught with difficult choices and pitfalls.


翻译:众所周知,神经网络能够探测噪音数据的一般模式。这使得它们成为复杂的人工智能系统中感知组成部分的流行工具。自相矛盾的是,它们也以易受对抗性攻击而闻名。作为回应,提出了各种方法,如对抗性培训、数据增强和利普西茨强力培训等,作为提高网络稳健性的手段。然而,正如本文件所探讨的那样,这些培训方法为不同强性定义提供了最佳选择。我们对这些不同的定义进行了深入的比较,包括它们的关系、假设、可解释性和培训后的可核查性。我们还研究了制约性培训,这是一种旨在编码任意限制的一般方法,表明并非所有这些定义都可直接编码。最后,我们进行了实验,以比较培训方法在确保网络遵守这些不同定义方面的适用性和有效性。这些结果突出表明,即使是神经网络培训的强健性等简单知识的编码也充满了困难的选择和陷阱。

0
下载
关闭预览

相关内容

【知识图谱@EMNLP2020】Knowledge Graphs in NLP @ EMNLP 2020
专知会员服务
42+阅读 · 2020年11月22日
知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
105+阅读 · 2020年6月10日
17篇知识图谱Knowledge Graphs论文 @AAAI2020
专知会员服务
171+阅读 · 2020年2月13日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
计算机类 | ISCC 2019等国际会议信息9条
Call4Papers
5+阅读 · 2018年12月25日
计算机 | CCF推荐会议信息10条
Call4Papers
5+阅读 · 2018年10月18日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
101+阅读 · 2020年3月4日
Arxiv
6+阅读 · 2019年9月4日
Knowledge Flow: Improve Upon Your Teachers
Arxiv
5+阅读 · 2019年4月11日
A Probe into Understanding GAN and VAE models
Arxiv
9+阅读 · 2018年12月13日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
计算机类 | ISCC 2019等国际会议信息9条
Call4Papers
5+阅读 · 2018年12月25日
计算机 | CCF推荐会议信息10条
Call4Papers
5+阅读 · 2018年10月18日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员