We formalize AI alignment as a multi-objective optimization problem called $\langle M,N,\varepsilon,δ\rangle$-agreement, in which a set of $N$ agents (including humans) must reach approximate ($\varepsilon$) agreement across $M$ candidate objectives, with probability at least $1-δ$. Analyzing communication complexity, we prove an information-theoretic lower bound showing that once either $M$ or $N$ is large enough, no amount of computational power or rationality can avoid intrinsic alignment overheads. This establishes rigorous limits to alignment *itself*, not merely to particular methods, clarifying a "No-Free-Lunch" principle: encoding "all human values" is inherently intractable and must be managed through consensus-driven reduction or prioritization of objectives. Complementing this impossibility result, we construct explicit algorithms as achievability certificates for alignment under both unbounded and bounded rationality with noisy communication. Even in these best-case regimes, our bounded-agent and sampling analysis shows that with large task spaces ($D$) and finite samples, *reward hacking is globally inevitable*: rare high-loss states are systematically under-covered, implying scalable oversight must target safety-critical slices rather than uniform coverage. Together, these results identify fundamental complexity barriers -- tasks ($M$), agents ($N$), and state-space size ($D$) -- and offer principles for more scalable human-AI collaboration.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员