In this paper we study test time decoding; an ubiquitous step in almost all sequential text generation task spanning across a wide array of natural language processing (NLP) problems. Our main contribution is to develop a continuous relaxation framework for the combinatorial NP-hard decoding problem and propose Disco - an efficient algorithm based on standard first order gradient based. We provide tight analysis and show that our proposed algorithm linearly converges to within $\epsilon$ neighborhood of the optima. Finally, we perform preliminary experiments on the task of adversarial text generation and show superior performance of Disco over several popular decoding approaches.
翻译:在本文中,我们研究时间的解码测试;几乎所有相继的文本生成任务中无处不在的一步,贯穿各种自然语言处理(NLP)问题。我们的主要贡献是针对组合式NP-硬解码问题制定一个持续的放松框架,并提议迪斯科(Disco)是一种基于标准的一阶梯度的高效算法。我们提供严谨的分析,并表明我们提议的算法线性一致到奥普蒂马附近的$\epsilon$范围内。最后,我们进行了关于对抗性文本生成任务的初步实验,并展示迪斯科(Disco)优于几种流行解码方法的优异性表现。