Pseudo-labeling (PL) and Data Augmentation-based Consistency Training (DACT) are two approaches widely used in Semi-Supervised Learning (SSL) methods. These methods exhibit great power in many machine learning tasks by utilizing unlabeled data for efficient training. But in a more realistic setting (termed as open-set SSL), where unlabeled dataset contains out-of-distribution (OOD) samples, the traditional SSL methods suffer severe performance degradation. Recent approaches mitigate the negative influence of OOD samples by filtering them out from the unlabeled data. However, it is not clear whether directly removing the OOD samples is the best choice. Furthermore, why PL and DACT could perform differently in open-set SSL remains a mystery. In this paper, we thoroughly analyze various SSL methods (PL and DACT) on open-set SSL and discuss pros and cons of these two approaches separately. Based on our analysis, we propose Style Disturbance to improve traditional SSL methods on open-set SSL and experimentally show our approach can achieve state-of-the-art results on various datasets by utilizing OOD samples properly. We believe our study can bring new insights for SSL research.


翻译:以半暂停学习方法中广泛使用的两种方法,是半暂停学习方法(SSL)中广泛使用的两种方法。这些方法在许多机器学习任务中表现出巨大的力量,利用未贴标签的数据进行高效培训。但在更现实的环境下(称为开放设置的SSL),未贴标签的数据集包含分配(OOOD)样本,传统的SSL方法严重性能退化。最近的方法通过从未贴标签的数据中过滤OOOD样本,减轻了OOOD样本的负面影响。然而,尚不清楚直接删除 OOOD样本是否是最佳选择。此外,为什么CPL和DACT在开放设置的SSL中能够以不同的方式执行,这仍然是个谜团。在本文件中,我们深入分析了开放设置的SSL(P和DACT)中的各种SSL方法,并分别讨论这两种方法的Pros和共性能。根据我们的分析,我们建议SLF在改进关于开放设置的SSL传统方法和实验性地展示我们的方法能够实现开放设置的状态深刻的OARD结果。

0
下载
关闭预览

相关内容

商业数据分析,39页ppt
专知会员服务
159+阅读 · 2020年6月2日
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
95+阅读 · 2020年5月31日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Yann Lecun 纽约大学《深度学习(PyTorch)》课程(2020)PPT
专知会员服务
179+阅读 · 2020年3月16日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年11月4日
Arxiv
14+阅读 · 2021年8月5日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员