Neural architecture search (NAS) is a recent methodology for automating the design of neural network architectures. Differentiable neural architecture search (DARTS) is a promising NAS approach that dramatically increases search efficiency. However, it has been shown to suffer from performance collapse, where the search often leads to detrimental architectures. Many recent works try to address this issue of DARTS by identifying indicators for early stopping, regularising the search objective to reduce the dominance of some operations, or changing the parameterisation of the search problem. In this work, we hypothesise that performance collapses can arise from poor local optima around typical initial architectures and weights. We address this issue by developing a more global optimisation scheme that is able to better explore the space without changing the DARTS problem formulation. Our experiments show that our changes in the search algorithm allow the discovery of architectures with both better test performance and fewer parameters.


翻译:神经结构搜索 (NAS) 是神经网络结构设计自动化的最新方法。 不同的神经结构搜索( DARSS) 是很有希望的NAS 方法, 大大提高了搜索效率。 然而, 事实证明, 它因性能崩溃而受害, 搜索往往导致建筑受损。 许多近期工作试图通过确定早期停止指标、 调整搜索目标以减少某些操作的主导性, 或改变搜索问题的参数化来解决 DARSS 问题。 在这项工作中, 我们假设, 性能崩溃可能来自典型的初始建筑和重量的本地偏好。 我们通过开发一个更全球性的优化计划来解决这一问题, 该计划能够更好地探索空间,而不会改变 DARSS 问题的设计。 我们的实验表明, 我们搜索算法的变化使得发现建筑的测试性能更好,参数更少。

0
下载
关闭预览

相关内容

【CHI2021】可解释人工智能导论
专知会员服务
119+阅读 · 2021年5月25日
【如何做研究】How to research ,22页ppt
专知会员服务
108+阅读 · 2021年4月17日
剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
49+阅读 · 2021年1月20日
【Google】梯度下降,48页ppt
专知会员服务
80+阅读 · 2020年12月5日
最新《神经架构搜索NAS》教程,33页pdf
专知会员服务
26+阅读 · 2020年12月2日
专知会员服务
115+阅读 · 2019年12月24日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
25+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
已删除
将门创投
7+阅读 · 2018年11月5日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Neural Architecture Search without Training
Arxiv
10+阅读 · 2021年6月11日
Arxiv
0+阅读 · 2021年6月10日
Arxiv
6+阅读 · 2020年10月8日
Neural Architecture Optimization
Arxiv
8+阅读 · 2018年9月5日
Arxiv
12+阅读 · 2018年9月5日
Arxiv
3+阅读 · 2018年6月24日
VIP会员
相关VIP内容
【CHI2021】可解释人工智能导论
专知会员服务
119+阅读 · 2021年5月25日
【如何做研究】How to research ,22页ppt
专知会员服务
108+阅读 · 2021年4月17日
剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
49+阅读 · 2021年1月20日
【Google】梯度下降,48页ppt
专知会员服务
80+阅读 · 2020年12月5日
最新《神经架构搜索NAS》教程,33页pdf
专知会员服务
26+阅读 · 2020年12月2日
专知会员服务
115+阅读 · 2019年12月24日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
25+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
已删除
将门创投
7+阅读 · 2018年11月5日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
相关论文
Neural Architecture Search without Training
Arxiv
10+阅读 · 2021年6月11日
Arxiv
0+阅读 · 2021年6月10日
Arxiv
6+阅读 · 2020年10月8日
Neural Architecture Optimization
Arxiv
8+阅读 · 2018年9月5日
Arxiv
12+阅读 · 2018年9月5日
Arxiv
3+阅读 · 2018年6月24日
Top
微信扫码咨询专知VIP会员