Much work has been dedicated to the exploration of Multi-Agent Reinforcement Learning (MARL) paradigms implementing a centralized learning with decentralized execution (CLDE) approach to achieve human-like collaboration in cooperative tasks. Here, we discuss variations of centralized training and describe a recent survey of algorithmic approaches. The goal is to explore how different implementations of information sharing mechanism in centralized learning may give rise to distinct group coordinated behaviors in multi-agent systems performing cooperative tasks.
翻译:在探索多机构强化学习(MARL)模式方面,已经做了大量工作,这些模式采用分散执行(CLDE)的集中学习方法,以实现在合作任务中开展类似人类的合作。这里,我们讨论集中培训的不同情况,并介绍最近对算法方法的调查。目的是探讨在集中学习中不同实施信息共享机制如何在从事合作任务的多机构系统中产生不同的群体协调行为。