Solving real-world manipulation tasks requires robots to have a repertoire of skills applicable to a wide range of circumstances. When using learning-based methods to acquire such skills, the key challenge is to obtain training data that covers diverse and feasible variations of the task, which often requires non-trivial manual labor and domain knowledge. In this work, we introduce Active Task Randomization (ATR), an approach that learns robust skills through the unsupervised generation of training tasks. ATR selects suitable tasks, which consist of an initial environment state and manipulation goal, for learning robust skills by balancing the diversity and feasibility of the tasks. We propose to predict task diversity and feasibility by jointly learning a compact task representation. The selected tasks are then procedurally generated in simulation using graph-based parameterization. The active selection of these training tasks enables skill policies trained with our framework to robustly handle a diverse range of objects and arrangements at test time. We demonstrate that the learned skills can be composed by a task planner to solve unseen sequential manipulation problems based on visual inputs. Compared to baseline methods, ATR can achieve superior success rates in single-step and sequential manipulation tasks.


翻译:解决现实世界中的操作任务需要机器人具备适用于各种情况的技能库。当使用基于学习的方法来获得这些技能时,关键的挑战是获得涵盖任务的多样和可行变化的训练数据,这通常需要非平凡的手动劳动和领域知识。在这项工作中,我们介绍了主动任务随机化(ATR),一种通过无监督生成训练任务来学习强大技能的方法。ATR通过平衡任务的多样性和可行性来选择合适的任务,这些任务由初始环境状态和操作目标组成。我们建议通过共同学习紧凑的任务表示来预测任务的多样性和可行性。然后使用基于图形的参数化在模拟中程序生成所选任务。这些训练任务的主动选择使得使用我们的框架训练的技能策略能够在测试时强大地处理各种对象和布置。我们证明了学习的技能可以由任务规划器通过视觉输入解决看不见的顺序操作问题。与基线方法相比,ATR可以在单步和顺序操作任务中实现优越的成功率。

0
下载
关闭预览

相关内容

【ICML2021】学习分子构象生成的梯度场
专知会员服务
15+阅读 · 2021年5月30日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
强化学习三篇论文 避免遗忘等
CreateAMind
20+阅读 · 2019年5月24日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
大神 一年100篇论文
CreateAMind
15+阅读 · 2018年12月31日
国家自然科学基金
42+阅读 · 2015年12月31日
国家自然科学基金
4+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
29+阅读 · 2022年3月28日
Arxiv
11+阅读 · 2020年12月2日
Arxiv
38+阅读 · 2020年3月10日
Learning Implicit Fields for Generative Shape Modeling
Arxiv
10+阅读 · 2018年12月6日
VIP会员
相关VIP内容
【ICML2021】学习分子构象生成的梯度场
专知会员服务
15+阅读 · 2021年5月30日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
相关基金
国家自然科学基金
42+阅读 · 2015年12月31日
国家自然科学基金
4+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员