When multiple parties that deal with private data aim for a collaborative prediction task such as medical image classification, they are often constrained by data protection regulations and lack of trust among collaborating parties. If done in a privacy-preserving manner, predictive analytics can benefit from the collective prediction capability of multiple parties holding complementary datasets on the same machine learning task. This paper presents PRICURE, a system that combines complementary strengths of secure multi-party computation (SMPC) and differential privacy (DP) to enable privacy-preserving collaborative prediction among multiple model owners. SMPC enables secret-sharing of private models and client inputs with non-colluding secure servers to compute predictions without leaking model parameters and inputs. DP masks true prediction results via noisy aggregation so as to deter a semi-honest client who may mount membership inference attacks. We evaluate PRICURE on neural networks across four datasets including benchmark medical image classification datasets. Our results suggest PRICURE guarantees privacy for tens of model owners and clients with acceptable accuracy loss. We also show that DP reduces membership inference attack exposure without hurting accuracy.


翻译:当处理私人数据的多个当事方试图进行医疗图像分类等合作预测任务时,它们往往受到数据保护条例的限制,而且合作方之间缺乏信任。如果以保密方式进行,预测分析可受益于持有同一机器学习任务补充数据集的多个当事方的集体预测能力。本文介绍PRICURRE,这是一个将安全多方计算(SMPC)和差异隐私(DP)的互补优势结合起来的系统,使多个模型所有者能够进行隐私保护合作预测。SMPC允许秘密分享私人模型和客户与非混合安全服务器的投入,以便在不泄露模型参数和投入的情况下进行预测。DP掩盖通过吵闹的聚合产生的真实预测结果,以阻止可能进行推断攻击的半诚实客户。我们评价四个数据集的神经网络的PRCURRE,包括基准医疗图像分类数据集。我们的结果表明,PRCURRE保证模型所有者和客户的隐私,从而可以接受准确损失。我们还表明,DP在不伤害准确性的情况下减少成员对攻击的推论。

0
下载
关闭预览

相关内容

图像分类,顾名思义,是一个输入图像,输出对该图像内容分类的描述的问题。它是计算机视觉的核心,实际应用广泛。
最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
89+阅读 · 2020年12月2日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Arxiv
110+阅读 · 2020年2月5日
Arxiv
6+阅读 · 2018年2月7日
VIP会员
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Top
微信扫码咨询专知VIP会员