Automatically extracting key information from scientific documents has the potential to help scientists work more efficiently and accelerate the pace of scientific progress. Prior work has considered extracting document-level entity clusters and relations end-to-end from raw scientific text, which can improve literature search and help identify methods and materials for a given problem. Despite the importance of this task, most existing works on scientific information extraction (SciIE) consider extraction solely based on the content of an individual paper, without considering the paper's place in the broader literature. In contrast to prior work, we augment our text representations by leveraging a complementary source of document context: the citation graph of referential links between citing and cited papers. On a test set of English-language scientific documents, we show that simple ways of utilizing the structure and content of the citation graph can each lead to significant gains in different scientific information extraction tasks. When these tasks are combined, we observe a sizable improvement in end-to-end information extraction over the state-of-the-art, suggesting the potential for future work along this direction. We release software tools to facilitate citation-aware SciIE development.
翻译:从科学文件中自动提取关键信息有可能帮助科学家更高效地工作,加快科学进步的步伐。先前的工作考虑从原始科学文本中提取文件级实体集群和关系端至端,这可以改进文献搜索,帮助确定特定问题的方法和材料。尽管这项任务很重要,但大多数现有的科学信息提取工作(SciIE)仅考虑单个文件的内容,而没有考虑文件在更广泛的文献中的位置。与以前的工作不同,我们通过利用一个互补的文件背景来源,即引用和引用的论文之间优先链接的引文图,来增加我们的文本表述。在一套英语科学文件的测试中,我们表明,利用引用图的结构和内容的简单方法,都可导致不同科学信息提取任务的重大收益。当这些任务合并在一起时,我们观察到端到端的信息提取工作有相当大的改进,表明今后沿着这一方向开展工作的可能性。我们推出软件工具,以促进引用识别SciIE的开发。