Automatically extracting key information from scientific documents has the potential to help scientists work more efficiently and accelerate the pace of scientific progress. Prior work has considered extracting document-level entity clusters and relations end-to-end from raw scientific text, which can improve literature search and help identify methods and materials for a given problem. Despite the importance of this task, most existing works on scientific information extraction (SciIE) consider extraction solely based on the content of an individual paper, without considering the paper's place in the broader literature. In contrast to prior work, we augment our text representations by leveraging a complementary source of document context: the citation graph of referential links between citing and cited papers. On a test set of English-language scientific documents, we show that simple ways of utilizing the structure and content of the citation graph can each lead to significant gains in different scientific information extraction tasks. When these tasks are combined, we observe a sizable improvement in end-to-end information extraction over the state-of-the-art, suggesting the potential for future work along this direction. We release software tools to facilitate citation-aware SciIE development.


翻译:从科学文件中自动提取关键信息有可能帮助科学家更高效地工作,加快科学进步的步伐。先前的工作考虑从原始科学文本中提取文件级实体集群和关系端至端,这可以改进文献搜索,帮助确定特定问题的方法和材料。尽管这项任务很重要,但大多数现有的科学信息提取工作(SciIE)仅考虑单个文件的内容,而没有考虑文件在更广泛的文献中的位置。与以前的工作不同,我们通过利用一个互补的文件背景来源,即引用和引用的论文之间优先链接的引文图,来增加我们的文本表述。在一套英语科学文件的测试中,我们表明,利用引用图的结构和内容的简单方法,都可导致不同科学信息提取任务的重大收益。当这些任务合并在一起时,我们观察到端到端的信息提取工作有相当大的改进,表明今后沿着这一方向开展工作的可能性。我们推出软件工具,以促进引用识别SciIE的开发。

1
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
ExBert — 可视化分析Transformer学到的表示
专知会员服务
32+阅读 · 2019年10月16日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
已删除
inpluslab
8+阅读 · 2019年10月29日
学术报告|UCLA副教授孙怡舟博士
科技创新与创业
9+阅读 · 2019年6月18日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
LibRec 精选:连通知识图谱与推荐系统
LibRec智能推荐
3+阅读 · 2018年8月9日
Arxiv
3+阅读 · 2019年3月1日
Arxiv
5+阅读 · 2017年4月12日
VIP会员
相关VIP内容
ExBert — 可视化分析Transformer学到的表示
专知会员服务
32+阅读 · 2019年10月16日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
相关资讯
已删除
inpluslab
8+阅读 · 2019年10月29日
学术报告|UCLA副教授孙怡舟博士
科技创新与创业
9+阅读 · 2019年6月18日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
LibRec 精选:连通知识图谱与推荐系统
LibRec智能推荐
3+阅读 · 2018年8月9日
Top
微信扫码咨询专知VIP会员