The current concept of Smart Cities influences urban planners and researchers to provide modern, secured and sustainable infrastructure and give a decent quality of life to its residents. To fulfill this need video surveillance cameras have been deployed to enhance the safety and well-being of the citizens. Despite technical developments in modern science, abnormal event detection in surveillance video systems is challenging and requires exhaustive human efforts. In this paper, we surveyed various methodologies developed to detect anomalies in intelligent video surveillance. Firstly, we revisit the surveys on anomaly detection in the last decade. We then present a systematic categorization of methodologies developed for ease of understanding. Considering the notion of anomaly depends on context, we identify different objects-of-interest and publicly available datasets in anomaly detection. Since anomaly detection is considered a time-critical application of computer vision, our emphasis is on anomaly detection using edge devices and approaches explicitly designed for them. Further, we discuss the challenges and opportunities involved in anomaly detection at the edge.
翻译:智能城市目前的概念影响着城市规划者和研究人员提供现代、有保障和可持续的基础设施,并赋予其居民体面的生活质量。为满足这一需要,已经部署了视频监控摄像机,以加强公民的安全和福祉。尽管现代科学的技术发展,但监视视频系统中的异常事件探测具有挑战性,需要人类作出详尽的努力。在本文件中,我们调查了为发现智能视频监控中的异常现象而开发的各种方法。首先,我们在过去十年中重新研究了关于异常现象检测的调查。然后,我们提出了为便于理解而开发的方法的系统分类。考虑到异常现象的概念取决于背景,我们查明了异常现象检测中的不同利益对象和可公开获取的数据集。由于异常现象检测被视为计算机视像的及时应用,我们的重点是使用边缘装置和为其明确设计的方法来检测异常现象。此外,我们讨论了边缘异常检测所涉及的挑战和机遇。