In the analysis of cluster randomized trials, two typical features are that individuals within a cluster are correlated and that the total number of clusters can sometimes be limited. While model-robust treatment effect estimators have been recently developed, their asymptotic theory requires the number of clusters to approach infinity, and one often has to empirically assess the applicability of those methods in finite samples. To address this challenge, we propose a conformal causal inference framework that achieves the target coverage probability of treatment effects in finite samples without the need for asymptotic approximations. Meanwhile, we prove that this framework is compatible with arbitrary working models, including machine learning algorithms leveraging baseline covariates, possesses robustness against arbitrary misspecification of working models, and accommodates a variety of within-cluster correlations. Under this framework, we offer efficient algorithms to make inferences on treatment effects at both the cluster and individual levels, applicable to user-specified covariate subgroups and two types of test data. Finally, we demonstrate our methods via simulations and a real data application based on a cluster randomized trial for treating chronic pain.
翻译:暂无翻译