UNet-based methods have shown outstanding performance in salient object detection (SOD), but are problematic in two aspects. 1) Indiscriminately integrating the encoder feature, which contains spatial information for multiple objects, and the decoder feature, which contains global information of the salient object, is likely to convey unnecessary details of non-salient objects to the decoder, hindering saliency detection. 2) To deal with ambiguous object boundaries and generate accurate saliency maps, the model needs additional branches, such as edge reconstructions, which leads to increasing computational cost. To address the problems, we propose a context fusion decoder network (CFDN) and near edge weighted loss (NEWLoss) function. The CFDN creates an accurate saliency map by integrating global context information and thus suppressing the influence of the unnecessary spatial information. NEWLoss accelerates learning of obscure boundaries without additional modules by generating weight maps on object boundaries. Our method is evaluated on four benchmarks and achieves state-of-the-art performance. We prove the effectiveness of the proposed method through comparative experiments.


翻译:UNet 方法在突出物体探测(SOD)方面表现突出,但在两个方面有问题。 1) 不加区别地将包含多个物体空间信息的编码器特性与包含突出物体全球信息的编码器特性结合在一起,有可能将非高度物体的不必要细节传递给分解器,从而妨碍显著探测。 2) 处理模糊物体边界和绘制准确的突出地图,模型需要额外的分支,如边缘重建,从而导致计算成本增加。为了解决这些问题,我们建议设置一个环境聚合解码器网络(CFDN)和近边缘加权损失(NEWLos)功能。CFDN通过整合全球背景信息,从而抑制不必要的空间信息的影响,制作准确的显要地图,从而加速学习模糊边界,而无需在物体边界上绘制重力图。我们的方法按四个基准进行评估,并达到最新性能。我们通过比较实验证明拟议方法的有效性。

0
下载
关闭预览

相关内容

专知会员服务
31+阅读 · 2021年6月12日
知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
106+阅读 · 2020年6月10日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
计算机 | USENIX Security 2020等国际会议信息5条
Call4Papers
7+阅读 · 2019年4月25日
CVPR2019 | Stereo R-CNN 3D 目标检测
极市平台
27+阅读 · 2019年3月10日
计算机类 | SIGMETRICS 2019等国际会议信息7条
Call4Papers
9+阅读 · 2018年10月23日
《pyramid Attention Network for Semantic Segmentation》
统计学习与视觉计算组
44+阅读 · 2018年8月30日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
11+阅读 · 2018年3月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
Arxiv
11+阅读 · 2019年4月15日
Arxiv
12+阅读 · 2019年1月24日
Arxiv
7+阅读 · 2018年12月5日
Arxiv
8+阅读 · 2018年5月17日
Arxiv
7+阅读 · 2018年3月19日
VIP会员
相关资讯
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
计算机 | USENIX Security 2020等国际会议信息5条
Call4Papers
7+阅读 · 2019年4月25日
CVPR2019 | Stereo R-CNN 3D 目标检测
极市平台
27+阅读 · 2019年3月10日
计算机类 | SIGMETRICS 2019等国际会议信息7条
Call4Papers
9+阅读 · 2018年10月23日
《pyramid Attention Network for Semantic Segmentation》
统计学习与视觉计算组
44+阅读 · 2018年8月30日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
11+阅读 · 2018年3月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
相关论文
Arxiv
11+阅读 · 2019年4月15日
Arxiv
12+阅读 · 2019年1月24日
Arxiv
7+阅读 · 2018年12月5日
Arxiv
8+阅读 · 2018年5月17日
Arxiv
7+阅读 · 2018年3月19日
Top
微信扫码咨询专知VIP会员