Partial differential equations (PDEs) are concise and understandable representations of domain knowledge, which are essential for deepening our understanding of physical processes and predicting future responses. However, the PDEs of many real-world problems are uncertain, which calls for PDE discovery. We propose the symbolic genetic algorithm (SGA-PDE) to discover open-form PDEs directly from data without prior knowledge about the equation structure. SGA-PDE focuses on the representation and optimization of PDE. Firstly, SGA-PDE uses symbolic mathematics to realize the flexible representation of any given PDE, transforms a PDE into a forest, and converts each function term into a binary tree. Secondly, SGA-PDE adopts a specially designed genetic algorithm to efficiently optimize the binary trees by iteratively updating the tree topology and node attributes. The SGA-PDE is gradient-free, which is a desirable characteristic in PDE discovery since it is difficult to obtain the gradient between the PDE loss and the PDE structure. In the experiment, SGA-PDE not only successfully discovered nonlinear Burgers' equation, Korteweg-de Vries (KdV) equation, and Chafee-Infante equation, but also handled PDEs with fractional structure and compound functions that cannot be solved by conventional PDE discovery methods.


翻译:局部偏差方程(PDEs)是简单易懂的域知识表现形式,对于加深我们对物理过程的理解和预测未来的反应至关重要。然而,许多现实世界问题的PDE(PDE)并不确定,这要求PDE的发现。我们提议象征性的基因算法(SGA-PDE)直接从数据中发现开放形式的PDE(SGA-PDE),而没有事先对方程结构不知情的数据。SGA-PDE(SDE)侧重于PDE的表述和优化。首先,SGA-PDE(SGA-PDE)使用象征性数学实现任何特定PDE的灵活表述,将PDE转换为森林,并将每个函数术语转换为二进制树。第二,SGA-PDE(S)采用专门设计的基因算法,通过迭接更新树表和节属性来高效优化二进制树树。SGA-DE(KDE-DE-decal-complical 等式)功能不能通过常规的方程式和分式方程式解决。

0
下载
关闭预览

相关内容

机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
13+阅读 · 2021年5月25日
Arxiv
6+阅读 · 2018年10月3日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员