In this document, some elements of the theory and algorithmics corresponding to the existence and computability of approximate joint eigenpairs for finite collections of matrices with applications to model order reduction, are presented. More specifically, given a finite collection $X_1,\ldots,X_d$ of Hermitian matrices in $\mathbb{C}^{n\times n}$, a positive integer $r\ll n$, and a collection of complex numbers $\hat{x}_{j,k}\in \mathbb{C}$ for $1\leq j\leq d$, $1\leq k\leq r$. First, we study the computability of a set of $r$ vectors $w_1,\ldots,w_r\in \mathbb{C}^{n}$, such that $w_k=\arg\min_{w\in \mathbb{C}^n}\sum_{j=1}^d\|X_jw-\hat{x}_{j,k} w\|^2$ for each $1\leq k \leq r$, then we present a model order reduction procedure based on the truncated joint approximate eigenbases computed with the aforementioned techniques. Some prototypical algorithms together with some numerical examples are presented as well.
翻译:在此文件中, 提供了一些理论和算法元素, 与存在和可计算性相对应, 约合的 egenpair 的理论和算法中的一些元素, 这些理论和算法是用于使用减少订单模型的有限矩阵收藏的。 首先, 我们研究了一套美元矢量的有限收藏 $X_ 1,\ldots, X_d$ d$ Hermitian 矩阵的可计算性, 以 $mathbbb{C\\\\\\\ntimen\ n} $, 正整数整数 $r\\\ {x ⁇ j\\\\ k}\ mathb{C}, 复杂数字的集合 $ $ $\xq j\\\\\ leqq d=_jw\ hat{x$ d$, 1\\\\ kleq\\\\\\\ rqrq$ w\\\ 2美元。 首先, 我们研究一套美元矢量计算方法的可折数级削减程序。