In Euclidean Uniform Facility Location, the input is a set of clients in $\mathbb{R}^d$ and the goal is to place facilities to serve them, so as to minimize the total cost of opening facilities plus connecting the clients. We study the classical setting of dynamic geometric streams, where the clients are presented as a sequence of insertions and deletions of points in the grid $\{1,\ldots,\Delta\}^d$, and we focus on the high-dimensional regime, where the algorithm's space complexity must be polynomial (and certainly not exponential) in $d\cdot\log\Delta$. We present a new algorithmic framework, based on importance sampling from the stream, for $O(1)$-approximation of the optimal cost using only $\mathrm{poly}(d\cdot\log\Delta)$ space. This framework is easy to implement in two passes, one for sampling points and the other for estimating their contribution. Over random-order streams, we can extend this to a one-pass algorithm by using the two halves of the stream separately. Our main result, for arbitrary-order streams, computes $O(d^{1.5})$-approximation in one pass by using the new framework but combining the two passes differently. This improves upon previous algorithms that either need space exponential in $d$ or only guarantee $O(d\cdot\log^2\Delta)$-approximation, and therefore our algorithms for high-dimensional streams are the first to avoid the $O(\log\Delta)$-factor in approximation that is inherent to the widely-used quadtree decomposition. Our improvement is achieved by introducing a novel geometric hashing scheme that maps points in $\mathbb{R}^d$ into buckets of bounded diameter, with the key property that every point set of small-enough diameter is hashed into at most $\mathrm{poly}(d)$ distinct buckets. Finally, we complement our results by showing $1.085$-approximation requires space exponential in $\mathrm{poly}(d\cdot\log\Delta)$, even for insertion-only streams.


翻译:在 Euclidean 统一设施位置中, 输入是一组以 $( mathb{R ⁇ d$) 计算的客户, 并且目标是为这些客户提供 $( mexial2 drob}R ⁇ d$), 以便最大限度地降低开机设施的总成本, 并连接客户。 我们研究动态几何流的典型设置, 客户以插入和删除网格中的点序列 $[1,\ ldot,\ delta ⁇ d$( dalfa}d$), 并且我们关注高维系的系统, 算法的空间复杂性必须是以美元为单位( 而不是以指数为单位) 。 我们可以通过从流中采集重要数据, $( $ $) 来展示一个新的算法框架, 也就是以美元( dddd\\ log\\ delta d) 的方式显示我们之前的平流中的平流, 也就是以我们当前平流中的平流为单位。

0
下载
关闭预览

相关内容

强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
0+阅读 · 2022年6月7日
Arxiv
54+阅读 · 2022年1月1日
Arxiv
23+阅读 · 2021年3月4日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员