Existing Collaborative Filtering (CF) methods are mostly designed based on the idea of matching, i.e., by learning user and item embeddings from data using shallow or deep models, they try to capture the associative relevance patterns in data, so that a user embedding can be matched with relevant item embeddings using designed or learned similarity functions. However, as a cognition rather than a perception intelligent task, recommendation requires not only the ability of pattern recognition and matching from data, but also the ability of cognitive reasoning in data. In this paper, we propose to advance Collaborative Filtering (CF) to Collaborative Reasoning (CR), which means that each user knows part of the reasoning space, and they collaborate for reasoning in the space to estimate preferences for each other. Technically, we propose a Neural Collaborative Reasoning (NCR) framework to bridge learning and reasoning. Specifically, we integrate the power of representation learning and logical reasoning, where representations capture similarity patterns in data from perceptual perspectives, and logic facilitates cognitive reasoning for informed decision making. An important challenge, however, is to bridge differentiable neural networks and symbolic reasoning in a shared architecture for optimization and inference. To solve the problem, we propose a modularized reasoning architecture, which learns logical operations such as AND ($\wedge$), OR ($\vee$) and NOT ($\neg$) as neural modules for implication reasoning ($\rightarrow$). In this way, logical expressions can be equivalently organized as neural networks, so that logical reasoning and prediction can be conducted in a continuous space. Experiments on real-world datasets verified the advantages of our framework compared with both shallow, deep and reasoning models.


翻译:现有的协作过滤(CF)方法大多是根据匹配理念设计的,即通过使用浅度或深度模型从数据中学习用户和项目嵌入,试图捕捉数据中的关联相关性模式,以便用户嵌入与使用设计或学习相似功能的相关项目嵌入相匹配。然而,作为一个认知而不是感知智能任务,建议不仅需要模式识别和匹配的能力,还需要数据中认知推理的能力。在本文中,我们提议将协作过滤(CF)推进到协作理性(CR),这意味着每个用户都了解部分推理空间,他们合作在空间中进行推理以估计彼此的偏好。在技术上,我们提议一个神经协作解释(NCR)框架来连接学习和推理。具体地说,我们整合代表学习和逻辑推理的力量,其中表达能够从感知角度获取相似的表达方式,逻辑可以促进知情决策的认知推理。然而,一个重大挑战是将等值的内值内值内值逻辑推论网络连接到对等等值的内值,他们合作在空间空间空间空间中进行推理推理,在空间中进行推理,从而推推推推推推推推推理,在共同推理中进行一个逻辑推理,在逻辑推理中,在逻辑推理中进行这样的逻辑推理,在逻辑推理,在逻辑推理中,在逻辑推理中进行这样的推理,在逻辑推理中,在逻辑推理中,在逻辑推理中,在逻辑推理中,在逻辑推理中,在逻辑推理,在逻辑推理中,在逻辑推理中,在逻辑推理中,在逻辑推理中,在逻辑推理中,在逻辑推理,在逻辑推理中,在逻辑推理中,在逻辑推理中,在逻辑推理上,在逻辑推理上,在逻辑推理上,在逻辑推理上,在逻辑推理上,在逻辑推理上,在逻辑推理上,在逻辑推理上,在逻辑推理上,在逻辑推理上,在逻辑推理上,在逻辑推理上,在逻辑推理上,在逻辑推理上,在逻辑推理上,在逻辑推理上,在逻辑推理上,在逻辑推理上,在逻辑推理上,在逻辑推

1
下载
关闭预览

相关内容

Cognition:Cognition:International Journal of Cognitive Science Explanation:认知:国际认知科学杂志。 Publisher:Elsevier。 SIT: http://www.journals.elsevier.com/cognition/
【CIKM2020】神经逻辑推理,Neural Logic Reasoning
专知会员服务
49+阅读 · 2020年8月25日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
计算机 | IUI 2020等国际会议信息4条
Call4Papers
6+阅读 · 2019年6月17日
CCF推荐 | 国际会议信息10条
Call4Papers
8+阅读 · 2019年5月27日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
推荐中的序列化建模:Session-based neural recommendation
机器学习研究会
18+阅读 · 2017年11月5日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
9+阅读 · 2020年2月15日
Arxiv
7+阅读 · 2019年6月20日
Arxiv
8+阅读 · 2019年5月20日
Arxiv
10+阅读 · 2019年2月19日
Arxiv
9+阅读 · 2018年1月30日
VIP会员
相关论文
Top
微信扫码咨询专知VIP会员