In this paper, we propose and analyze a linear, structure-preserving scalar auxiliary variable (SAV) method for solving the Allen--Cahn equation based on the second-order backward differentiation formula (BDF2) with variable time steps. To this end, we first design a novel and essential auxiliary functional that serves twofold functions: (i) ensuring that a first-order approximation to the auxiliary variable, which is essentially important for deriving the unconditional energy dissipation law, does not affect the second-order temporal accuracy of the phase function $\phi$; and (ii) allowing us to develop effective stabilization terms that are helpful to establish the MBP-preserving linear methods. Together with this novel functional and standard central difference stencil, we then propose a linear, second-order variable-step BDF2 type stabilized exponential SAV scheme, namely BDF2-sESAV-I, which is shown to preserve both the discrete modified energy dissipation law under the temporal stepsize ratio $ 0 < r_{k} := \tau_{k}/\tau_{k-1} < 4.864 - \delta $ with a positive constant $\delta$ and the MBP under $ 0 < r_{k} < 1 + \sqrt{2} $. Moreover, an analysis of the approximation to the original energy by the modified one is presented. With the help of the kernel recombination technique, optimal $ H^{1}$- and $ L^{\infty}$-norm error estimates of the variable-step BDF2-sESAV-I scheme are rigorously established. Numerical examples are carried out to verify the theoretical results and demonstrate the effectiveness and efficiency of the proposed scheme.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Layer Normalization原理及其TensorFlow实现
深度学习每日摘要
32+阅读 · 2017年6月17日
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Layer Normalization原理及其TensorFlow实现
深度学习每日摘要
32+阅读 · 2017年6月17日
相关基金
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员