Deliberation is a common and natural behavior in human daily life. For example, when writing papers or articles, we usually first write drafts, and then iteratively polish them until satisfied. In light of such a human cognitive process, we propose DECOM, which is a multi-pass deliberation framework for automatic comment generation. DECOM consists of multiple Deliberation Models and one Evaluation Model. Given a code snippet, we first extract keywords from the code and retrieve a similar code fragment from a pre-defined corpus. Then, we treat the comment of the retrieved code as the initial draft and input it with the code and keywords into DECOM to start the iterative deliberation process. At each deliberation, the deliberation model polishes the draft and generates a new comment. The evaluation model measures the quality of the newly generated comment to determine whether to end the iterative process or not. When the iterative process is terminated, the best-generated comment will be selected as the target comment. Our approach is evaluated on two real-world datasets in Java (87K) and Python (108K), and experiment results show that our approach outperforms the state-of-the-art baselines. A human evaluation study also confirms the comments generated by DECOM tend to be more readable, informative, and useful.


翻译:思考是人类日常生活中一种常见和自然的行为。 例如, 当撰写论文或文章时, 我们通常先先写草稿, 然后在满足之前迭代地擦亮草稿。 根据这样的人类认知过程, 我们提议DECOM, 这是一种自动生成评论的多角度审议框架。 DECOM 由多个审议模型和一个评价模型组成。 我们首先从代码中提取关键字, 从预定义的元素中检索一个类似的代码碎片。 然后, 我们把检索到的代码的评语当作初始草稿, 然后输入 DECOM 的代码和关键字, 以启动迭代审议过程。 在每次评议中, 评语模型将草稿抛光并生成新的评语。 评价模型将测量新生成的评论的质量, 以确定是否结束迭代进程。 当迭代进程结束时, 最佳的评语将被选为目标评语。 我们在Java( 87K) 和 Python (108K) 两个真实世界数据集上评估我们的方法, 实验结果显示我们的方法超越了 DE- COM 的状态、 可读到更有用的基线。

0
下载
关闭预览

相关内容

代码(Code)是专知网的一个重要知识资料文档板块,旨在整理收录论文源代码、复现代码,经典工程代码等,便于用户查阅下载使用。
专知会员服务
123+阅读 · 2020年9月8日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年10月25日
Arxiv
0+阅读 · 2022年10月25日
Arxiv
12+阅读 · 2022年1月26日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员