Defensive deception techniques have emerged as a promising proactive defense mechanism to mislead an attacker and thereby achieve attack failure. However, most game-theoretic defensive deception approaches have assumed that players maintain consistent views under uncertainty. They do not consider players' possible, subjective beliefs formed due to asymmetric information given to them. In this work, we formulate a hypergame between an attacker and a defender where they can interpret the same game differently and accordingly choose their best strategy based on their respective beliefs. This gives a chance for defensive deception strategies to manipulate an attacker's belief, which is the key to the attacker's decision making. We consider advanced persistent threat (APT) attacks, which perform multiple attacks in the stages of the cyber kill chain where both the attacker and the defender aim to select optimal strategies based on their beliefs. Through extensive simulation experiments, we demonstrated how effectively the defender can leverage defensive deception techniques while dealing with multi-staged APT attacks in a hypergame in which the imperfect information is reflected based on perceived uncertainty, cost, and expected utilities of both attacker and defender, the system lifetime (i.e., mean time to security failure), and improved false positive rates in detecting attackers.


翻译:然而,大多数游戏理论防御性欺骗方法都认为玩家在不确定的情况下会持有一致的观点。他们并不认为玩家有可能因向其提供的信息不对称而形成主观的信念。在这项工作中,我们设计了一个攻击者和捍卫者之间的超级游戏,他们可以对同样的游戏作出不同的解释,并据此根据各自的信仰选择其最佳战略。这为防御性欺骗战略提供了操纵攻击者信念的机会,而攻击者信念是攻击者决策的关键。我们认为,在网络杀人链的各个阶段,攻击者和捍卫者都试图根据他们的信仰选择最佳战略,这种威胁是多次发动的。通过广泛的模拟实验,我们证明捍卫者能够如何有效地利用防御性欺骗技术,同时在超大游戏中处理多级APT攻击,其中不完善的信息反映的是所察觉的不确定性、成本和攻击者和捍卫者预期的效用,即系统寿命(即意味着安全失败的时间),以及检测攻击者虚伪的积极率的提高。

1
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
可解释强化学习,Explainable Reinforcement Learning: A Survey
专知会员服务
131+阅读 · 2020年5月14日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
Arxiv
0+阅读 · 2021年3月5日
VIP会员
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
Top
微信扫码咨询专知VIP会员