Pancreatic cancer will soon be the second leading cause of cancer-related death in Western society. Imaging techniques such as CT, MRI and ultrasound typically help providing the initial diagnosis, but histopathological assessment is still the gold standard for final confirmation of disease presence and prognosis. In recent years machine learning approaches and pathomics pipelines have shown potential in improving diagnostics and prognostics in other cancerous entities, such as breast and prostate cancer. A crucial first step in these pipelines is typically identification and segmentation of the tumour area. Ideally this step is done automatically to prevent time consuming manual annotation. We propose a multi-task convolutional neural network to balance disease detection and segmentation accuracy. We validated our approach on a dataset of 29 patients (for a total of 58 slides) at different resolutions. The best single task segmentation network achieved a median Dice of 0.885 (0.122) IQR at a resolution of 15.56 $\mu$m. Our multi-task network improved on that with a median Dice score of 0.934 (0.077) IQR.
翻译:在西方社会,癌症将很快成为癌症相关死亡的第二大原因。CT、MRI和超声波等成像技术通常有助于提供初步诊断,但组织病理学评估仍然是最终确诊疾病存在和预测的黄金标准。近年来,机器学习方法和病理学管道在改善乳腺癌和前列腺癌等其他癌症实体的诊断和预测方面显示出潜力。这些管道的关键第一步是典型的肿瘤地区的识别和分解。最好自动采取这一步骤来防止时间消耗人工注解。我们提议建立一个多任务革命性神经网络,以平衡疾病检测和分解的准确性。我们在不同决议中验证了29名病人(共58个幻灯片)的数据集。最好的单任务分解网络实现了0.885(0.122) IQR中位,分辨率为15.56美元/mum。我们多任务分解网在这方面得到了改进,中位的Dice分数为0.934(0.077 IQR)。