Loan risk for small business has long been a complex problem worthy of exploring. Predicting the loan risk approximately can benefit entrepreneurship by developing more jobs for the society. CatBoost (Categorical Boosting) is a powerful machine learning algorithm that is suitable for dataset with many categorical variables like the dataset for forecasting loan risk. In this paper, we identify the important risk factors that contribute to loan status classification problem. Then we compare the the performance between boosting-type algorithms(especially CatBoost) with other traditional yet popular ones. The dataset we adopt in the research comes from the U.S. Small Business Administration (SBA) and holds a very large sample size (899,164 observations and 27 features). We obtain a high accuracy of 95.74% and well-performed AUC of 98.59% compared with the existent literature of related research. In order to make best use of the important features in the dataset, we propose a technique named "synthetic generation" to develop more combined features based on arithmetic operation, which ends up improving the accuracy and AUC of original CatBoost model.
翻译:对小企业的贷款风险长期以来是一个值得探讨的复杂问题。 预测贷款风险大约可以通过为社会创造更多就业机会而使创业受益。 Catboost(Catboost)是一种强大的机器学习算法,适合于包含许多绝对变量的数据集,如用于预测贷款风险的数据集。 在本文中,我们确定了导致贷款状况分类问题的重要风险因素。然后我们比较了提振型算法(特别是CatBoost)与其他传统但很受欢迎的算法的性能。我们在研究中使用的数据集来自美国小企业管理局(SABA),具有非常大的样本规模(899,164次观察和27个特征)。我们获得了95.74%的高精度和完善的ACUC,比相关研究的现有文献高出98.59%。为了最佳地利用数据集中的重要特征,我们建议了一种名为“合成生成”的技术,以根据计算操作开发更多组合特征,从而最终改进了原CatBoost模型的准确性和AUC。