News outlets are developing formats dedicated to social platforms that capture audience attention, such as Instagram stories, Facebook Instant articles, and YouTube videos. In some cases, these formats are created in collaboration with the tech companies themselves. At the same time, the use of data-driven storytelling is becoming increasingly integrated into the ever-complex business models of news outlets, generating more impact and visibility. Previous studies have focused on studying these two effects separately. To address this gap in the literature, this paper identifies and analyzes the use of data journalism on the Instagram content of AJ Labs, the team dedicated to producing data-driven and interactive stories for the Al Jazeera news network. Drawing upon a mixed-method approach, this study examines the use and characteristics of data stories on social media platforms. Results suggest that there is reliance on producing visual content that covers topics such as politics and violence. In general, AJ Labs relies on the use of infographics and produces its own unique data. To conclude, this paper suggests potential ways to improve the use of Instagram to tell data stories.


翻译:新闻渠道正在开发吸引观众关注的社会平台专用格式,如Instagram故事、Facebook Instant文章和YouTube视频。在某些情况下,这些格式是与技术公司本身合作创建的。与此同时,数据驱动的故事叙述正在越来越多地纳入日益复杂的新闻渠道商业模式,产生更大的影响和可见度。以前的研究侧重于分别研究这两个影响。为了弥补文献中的这一差距,本文确定并分析了关于AJ实验室Instagram内容的数据新闻报道的使用情况,这是专门为半岛电视台新闻网络制作数据驱动和互动故事的小组。这项研究利用混合方法,审查了社会媒体平台数据故事的使用和特点。研究结果表明,人们依赖制作涵盖政治和暴力等专题的视觉内容。一般而言,AJ实验室依靠使用地图和制作自己的独特数据。最后,本文提出了改进利用Instagram来讲述数据故事的潜在方法。

0
下载
关闭预览

相关内容

Instagram 是一款运行在 iPhone 和 Android 平台上的应用程序,允许用户在任何环境下抓拍下自己的生活记忆,选择图片的滤镜样式,一键分享至社会化平台上。Instagram 在移动端融入了很多社会化元素,包括好友关系的建立、回复、分享等,这是Instagram 作为服务存在而非应用存在最大的价值。 instagram.com/ 
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年11月15日
VIP会员
相关VIP内容
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Top
微信扫码咨询专知VIP会员