Convolutional Neural Networks (CNNs) compression is crucial to deploying these models in edge devices with limited resources. Existing channel pruning algorithms for CNNs have achieved plenty of success on complex models. They approach the pruning problem from various perspectives and use different metrics to guide the pruning process. However, these metrics mainly focus on the model's `outputs' or `weights' and neglect its `interpretations' information. To fill in this gap, we propose to address the channel pruning problem from a novel perspective by leveraging the interpretations of a model to steer the pruning process, thereby utilizing information from both inputs and outputs of the model. However, existing interpretation methods cannot get deployed to achieve our goal as either they are inefficient for pruning or may predict non-coherent explanations. We tackle this challenge by introducing a selector model that predicts real-time smooth saliency masks for pruned models. We parameterize the distribution of explanatory masks by Radial Basis Function (RBF)-like functions to incorporate geometric prior of natural images in our selector model's inductive bias. Thus, we can obtain compact representations of explanations to reduce the computational costs of our pruning method. We leverage our selector model to steer the network pruning by maximizing the similarity of explanatory representations for the pruned and original models. Extensive experiments on CIFAR-10 and ImageNet benchmark datasets demonstrate the efficacy of our proposed method. Our implementations are available at \url{https://github.com/Alii-Ganjj/InterpretationsSteeredPruning}
翻译:精密神经网络(CNNs)压缩对于在有限的资源条件下将这些模型部署在边缘设备中至关重要。 CNN现有频道修配算算法在复杂的模型中取得了大量成功。 它们从不同的角度处理修补问题, 并使用不同的度量来指导修补过程。 但是, 这些度量主要侧重于模型的“ 输出” 或“ 重量 ”, 忽视其“ 解释” 信息。 为了填补这一空白, 我们提议从新角度解决频道破解问题, 利用对模型的解释来引导裁剪过程, 从而利用来自该模型投入和输出的信息。 然而, 现有的解算方法无法实现我们的目标, 因为它们对修补进程来说效率不高, 或者可能预测非光亮的解释。 我们通过引入一个选择模型模型来预测“ 光亮的显性掩码 ” 。 我们通过Radialgialboral Basy( RBF) 类似功能的功能, 将原始图像的测算纳入我们的选标基模型的精度模型的精度模型/ 模拟模拟的模拟模拟模拟模拟模拟模拟模拟模拟的模拟的模拟的模拟模拟模拟的模拟模拟的模拟的模拟的模拟的模拟的模拟的模拟的模拟的模拟的模拟的模拟的模拟的模拟的模拟的模拟的模拟的模拟的模拟的模拟的模拟的模拟的模拟的模拟的模拟的模拟的模拟的模拟的模拟的模拟的模拟的模拟的模拟的模拟的模拟的模拟的模拟的模拟的模拟的模拟的模拟的模拟的模拟的模拟的模拟的模拟的模拟的模拟的模拟的模拟的模拟的模拟的模拟的模拟的模拟的模拟的模拟的模拟的模拟的模拟的模拟的模拟的模拟的模拟的模拟的模拟的模拟的模拟的模拟的模拟的模拟的模拟的模拟的模拟的模拟的模拟的模拟的模拟的模拟的模拟的模拟的模拟的模拟的模拟的模拟的模拟的模拟的模拟的模拟的模拟的模拟的模拟的模拟的模拟的模拟的模拟的模拟的模拟的模拟的模拟的模拟的模拟的模拟的模拟的模拟的模拟的模拟的模拟的模拟的模拟的模拟的模拟的模拟的模拟的模拟的模拟的模拟的模拟的模拟的模拟的模拟的模拟的模拟的模拟的模拟的模拟的模拟的模拟的模拟的