This survey aims at providing a comprehensive overview of the recent trends in the field of modeling and simulation (M&S) of interactions between users and recommender systems and applications of the M&S to the performance improvement of industrial recommender engines. We start with the motivation behind the development of frameworks implementing the simulations -- simulators -- and the usage of them for training and testing recommender systems of different types (including Reinforcement Learning ones). Furthermore, we provide a new consistent classification of existing simulators based on their functionality, approbation, and industrial effectiveness and moreover make a summary of the simulators found in the research literature. Besides other things, we discuss the building blocks of simulators: methods for synthetic data (user, item, user-item responses) generation, methods for what-if experimental analysis, methods and datasets used for simulation quality evaluation (including the methods that monitor and/or close possible simulation-to-reality gaps), and methods for summarization of experimental simulation results. Finally, this survey considers emerging topics and open problems in the field.
翻译:本次调查的目的是全面概述在模拟和模拟用户与推荐人之间的相互作用以及合并和验证系统和应用方面的最新趋势,以便改进工业推荐人引擎的性能。我们首先从制定模拟框架 -- -- 模拟器 -- -- 的动机出发,并用模拟器进行不同类型的培训和测试建议系统(包括强化学习系统),此外,我们根据现有模拟器的功能、近似和工业效能,对现有模拟器进行新的一致分类,并摘要介绍研究文献中发现的模拟器。除了其他事项外,我们讨论了模拟器的构件:合成数据(用户、项目、用户-项目响应)生成方法、模拟质量评估所用何种实验分析方法、方法和数据集(包括监测和/或接近模拟-现实差距的方法)以及模拟结果的总结方法。最后,本调查审视了实地新出现的专题和公开问题。