Online video services acquire new content on a daily basis to increase engagement, and improve the user experience. Traditional recommender systems solely rely on watch history, delaying the recommendation of newly added titles to the right customer. However, one can use the metadata information of a cold-start title to bootstrap the personalization. In this work, we propose to adopt a two-tower model, in which one tower is to learn the user representation based on their watch history, and the other tower is to learn the effective representations for titles using metadata. The contribution of this work can be summarized as: (1) we show the feasibility of using two-tower model for recommendations and conduct a series of offline experiments to show its performance for cold-start titles; (2) we explore different types of metadata (categorical features, text description, cover-art image) and an attention layer to fuse them; (3) with our Amazon proprietary data, we show that the attention layer can assign weights adaptively to different metadata with improved recommendation for warm- and cold-start items.
翻译:在线视频服务每天获取新内容,以增加参与,改善用户经验。传统推荐系统完全依赖观察历史,推迟向右客户推荐新增加的标题。然而,人们可以使用冷启动标题的元数据信息来诱使个人化。在这项工作中,我们提议采用双塔模式,一个塔将学习基于其观察历史的用户代表,另一个塔将学习使用元数据的标题的有效表述。 这项工作的贡献可以概括为:(1) 我们展示使用双塔模式提出建议的可行性,并进行一系列离线实验,以展示其冷启动标题的性能;(2) 我们探索不同类型的元数据(分类特征、文本描述、封面图象)和关注层,以整合这些元数据;(3) 我们用亚马逊的专有数据,我们显示注意层可以对不同元数据进行权重的调整,同时改进热启动和冷启动项目的建议。