The consumption of tobacco has reached global epidemic proportions and is characterized as the leading cause of death and illness. Among the different ways of consuming tobacco (e.g., smokeless, cigars), smoking cigarettes is the most widespread. In this paper, we present a two-step, bottom-up algorithm towards the automatic and objective monitoring of cigarette-based, smoking behavior during the day, using the 3D acceleration and orientation velocity measurements from a commercial smartwatch. In the first step, our algorithm performs the detection of individual smoking gestures (i.e., puffs) using an artificial neural network with both convolutional and recurrent layers. In the second step, we make use of the detected puff density to achieve the temporal localization of smoking sessions that occur throughout the day. In the experimental section we provide extended evaluation regarding each step of the proposed algorithm, using our publicly available, realistic Smoking Event Detection (SED) and Free-living Smoking Event Detection (SED-FL) datasets recorded under semi-controlled and free-living conditions, respectively. In particular, leave-one-subject-out (LOSO) experiments reveal an F1-score of 0.863 for the detection of puffs and an F1-score/Jaccard index equal to 0.878/0.604 towards the temporal localization of smoking sessions during the day. Finally, to gain further insight, we also compare the puff detection part of our algorithm with a similar approach found in the recent literature.


翻译:烟草消费已达到全球流行程度,并被定性为死亡和疾病的主要原因。在消费烟草的不同方式(例如无烟、雪茄、雪茄)中,吸烟的香烟最为普遍。在本文中,我们用三维加速度和定向速度测量法,利用商业智能观察,对日间吸烟行为进行自动和客观监测,提出了两步、自下而上的算法,使用三维加速度和定向速度测量法,从商业智能观察,在第一步,我们的算法利用具有卷发和复发层的人工神经网络,对个人吸烟动作(即抽吸)进行检测。在第二步,我们利用已检测的抽吸密度实现全天吸烟时间本地化。在试验部分,我们利用公开的三维吸烟事件真实性检测(SED-FL)和自住性吸烟事件检测(SED-FLA),分别用在半控制和自由生活方式下记录的个人吸烟动作(即抽吸口)数据集。特别是,离左线(LOSO)实验显示F1-783日历期间的F1-586级记录和0.186最后记录,用于检测。我们0.18GMLA/底压记录。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2021年6月30日
MonoGRNet:单目3D目标检测的通用框架(TPAMI2021)
专知会员服务
17+阅读 · 2021年5月3日
开源书:PyTorch深度学习起步
专知会员服务
50+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
计算机 | IUI 2020等国际会议信息4条
Call4Papers
6+阅读 · 2019年6月17日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
人工智能 | ISAIR 2019诚邀稿件(推荐SCI期刊)
Call4Papers
6+阅读 · 2019年4月1日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
人工智能 | SCI期刊专刊/国际会议信息7条
Call4Papers
7+阅读 · 2019年3月12日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
人工智能 | COLT 2019等国际会议信息9条
Call4Papers
6+阅读 · 2018年9月21日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
VIP会员
相关资讯
计算机 | IUI 2020等国际会议信息4条
Call4Papers
6+阅读 · 2019年6月17日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
人工智能 | ISAIR 2019诚邀稿件(推荐SCI期刊)
Call4Papers
6+阅读 · 2019年4月1日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
人工智能 | SCI期刊专刊/国际会议信息7条
Call4Papers
7+阅读 · 2019年3月12日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
人工智能 | COLT 2019等国际会议信息9条
Call4Papers
6+阅读 · 2018年9月21日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员