We explore the possibility to use physics-informed neural networks to drastically accelerate the solution of ordinary differential-algebraic equations that govern the power system dynamics. When it comes to transient stability assessment, the traditionally applied methods either carry a significant computational burden, require model simplifications, or use overly conservative surrogate models. Conventional neural networks can circumvent these limitations but are faced with high demand of high-quality training datasets, while they ignore the underlying governing equations. Physics-informed neural networks are different: they incorporate the power system differential algebraic equations directly into the neural network training and drastically reduce the need for training data. This paper takes a deep dive into the performance of physics-informed neural networks for power system transient stability assessment. Introducing a new neural network training procedure to facilitate a thorough comparison, we explore how physics-informed neural networks compare with conventional differential-algebraic solvers and classical neural networks in terms of computation time, requirements in data, and prediction accuracy. We illustrate the findings on the Kundur two-area system, and assess the opportunities and challenges of physics-informed neural networks to serve as a transient stability analysis tool, highlighting possible pathways to further develop this method.


翻译:我们探讨是否有可能利用物理知情神经网络来大幅度加速解决支配动力系统动态的普通差位热核方程式的解决方案。在短暂的稳定评估方面,传统应用的方法要么具有重大的计算负担,要求模型简化,要么使用过于保守的替代模型。常规神经网络可以绕过这些限制,但面对高质量的培训数据集的高需求,而它们却忽视了基本方程式。物理知情神经网络不同:它们将动力系统差异的代数方程式直接纳入神经网络培训,并大大减少了培训数据的需求。本文对物理知情神经网络的运行进行了深入的潜伏,用于动力系统快速稳定评估。引入了新的神经网络培训程序,以便于进行彻底比较,我们探索物理学知情神经网络如何在计算时间、数据要求和预测准确性方面与传统的差异地质溶液和古典神经网络进行对比。我们展示了Kundur两地区系统的调查结果,并评估了物理知情神经网络的机会和挑战,以作为可能的横向稳定分析工具,以进一步发展这一稳定方法。

0
下载
关闭预览

相关内容

神经网络(Neural Networks)是世界上三个最古老的神经建模学会的档案期刊:国际神经网络学会(INNS)、欧洲神经网络学会(ENNS)和日本神经网络学会(JNNS)。神经网络提供了一个论坛,以发展和培育一个国际社会的学者和实践者感兴趣的所有方面的神经网络和相关方法的计算智能。神经网络欢迎高质量论文的提交,有助于全面的神经网络研究,从行为和大脑建模,学习算法,通过数学和计算分析,系统的工程和技术应用,大量使用神经网络的概念和技术。这一独特而广泛的范围促进了生物和技术研究之间的思想交流,并有助于促进对生物启发的计算智能感兴趣的跨学科社区的发展。因此,神经网络编委会代表的专家领域包括心理学,神经生物学,计算机科学,工程,数学,物理。该杂志发表文章、信件和评论以及给编辑的信件、社论、时事、软件调查和专利信息。文章发表在五个部分之一:认知科学,神经科学,学习系统,数学和计算分析、工程和应用。 官网地址:http://dblp.uni-trier.de/db/journals/nn/
【NeurIPS2020-MIT】子图神经网络,Subgraph Neural Networks
专知会员服务
45+阅读 · 2020年9月28日
神经网络的拓扑结构,TOPOLOGY OF DEEP NEURAL NETWORKS
专知会员服务
32+阅读 · 2020年4月15日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
40+阅读 · 2019年10月9日
量化金融强化学习论文集合
专知
13+阅读 · 2019年12月18日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
已删除
将门创投
4+阅读 · 2018年6月4日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Sparsifying Neural Network Connections for Face Recognition
统计学习与视觉计算组
7+阅读 · 2017年6月10日
Arxiv
0+阅读 · 2022年1月18日
Arxiv
7+阅读 · 2021年5月13日
Arxiv
3+阅读 · 2018年10月25日
Arxiv
6+阅读 · 2018年10月3日
VIP会员
相关资讯
量化金融强化学习论文集合
专知
13+阅读 · 2019年12月18日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
已删除
将门创投
4+阅读 · 2018年6月4日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Sparsifying Neural Network Connections for Face Recognition
统计学习与视觉计算组
7+阅读 · 2017年6月10日
Top
微信扫码咨询专知VIP会员