Recent works in neural network verification show that cheap incomplete verifiers such as CROWN, based upon bound propagations, can effectively be used in Branch-and-Bound (BaB) methods to accelerate complete verification, achieving significant speedups compared to expensive linear programming (LP) based techniques. However, they cannot fully handle the per-neuron split constraints introduced by BaB like LP verifiers do, leading to looser bounds and hurting their verification efficiency. In this work, we develop $\beta$-CROWN, a new bound propagation based method that can fully encode per-neuron splits via optimizable parameters $\beta$. When the optimizable parameters are jointly optimized in intermediate layers, $\beta$-CROWN has the potential of producing better bounds than typical LP verifiers with neuron split constraints, while being efficiently parallelizable on GPUs. Applied to the complete verification setting, $\beta$-CROWN is close to three orders of magnitude faster than LP-based BaB methods for robustness verification, and also over twice faster than state-of-the-art GPU-based complete verifiers with similar timeout rates. By terminating BaB early, our method can also be used for incomplete verification. Compared to the state-of-the-art semidefinite-programming (SDP) based verifier, we show a substantial leap forward by greatly reducing the gap between verified accuracy and empirical adversarial attack accuracy, from 35% (SDP) to 12% on an adversarially trained MNIST network ($\epsilon=0.3$), while being 47 times faster. Our code is available at https://github.com/KaidiXu/Beta-CROWN


翻译:神经网络核查的近期工程表明,基于定线传播的CROWN等廉价的不完全的校验器可以有效地用于分流和分流(BAB)方法,以加速完整的核查,实现与昂贵线性编程(LP)基于技术相比的大幅加速。然而,它们无法完全处理像LP核查员那样的BAB(BAB)引入的每中子分解限制,导致松散,损害其核查效率。在这项工作中,我们开发了美元(Beta$-CROWN),这是一种基于调频的基于新调频传输的基于新调频度的基于新调频度的传播方法,能够通过可优化参数($\beta$-Ceta)来充分编码每中中中中子的分解。当可选参数在中间层联合优化时,$(Beta-C-CROWN)就有可能比典型的LP(LP-DFRI)更精确的校验系统,同时可以显示我们目前使用的GPU=Qral-ral-r-ral-ral-r

0
下载
关闭预览

相关内容

神经网络(Neural Networks)是世界上三个最古老的神经建模学会的档案期刊:国际神经网络学会(INNS)、欧洲神经网络学会(ENNS)和日本神经网络学会(JNNS)。神经网络提供了一个论坛,以发展和培育一个国际社会的学者和实践者感兴趣的所有方面的神经网络和相关方法的计算智能。神经网络欢迎高质量论文的提交,有助于全面的神经网络研究,从行为和大脑建模,学习算法,通过数学和计算分析,系统的工程和技术应用,大量使用神经网络的概念和技术。这一独特而广泛的范围促进了生物和技术研究之间的思想交流,并有助于促进对生物启发的计算智能感兴趣的跨学科社区的发展。因此,神经网络编委会代表的专家领域包括心理学,神经生物学,计算机科学,工程,数学,物理。该杂志发表文章、信件和评论以及给编辑的信件、社论、时事、软件调查和专利信息。文章发表在五个部分之一:认知科学,神经科学,学习系统,数学和计算分析、工程和应用。 官网地址:http://dblp.uni-trier.de/db/journals/nn/
专知会员服务
50+阅读 · 2020年12月14日
最新《Transformers模型》教程,64页ppt
专知会员服务
306+阅读 · 2020年11月26日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【推荐】TensorFlow手把手CNN实践指南
机器学习研究会
5+阅读 · 2017年8月17日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
自然语言处理(二)机器翻译 篇 (NLP: machine translation)
DeepLearning中文论坛
10+阅读 · 2015年7月1日
Arxiv
6+阅读 · 2019年4月8日
Arxiv
3+阅读 · 2018年8月17日
Efficient and Effective $L_0$ Feature Selection
Arxiv
5+阅读 · 2018年8月7日
VIP会员
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【推荐】TensorFlow手把手CNN实践指南
机器学习研究会
5+阅读 · 2017年8月17日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
自然语言处理(二)机器翻译 篇 (NLP: machine translation)
DeepLearning中文论坛
10+阅读 · 2015年7月1日
Top
微信扫码咨询专知VIP会员