Logical reasoning of text requires understanding critical logical information in the text and performing inference over them. Large-scale pre-trained models for logical reasoning mainly focus on word-level semantics of text while struggling to capture symbolic logic. In this paper, we propose to understand logical symbols and expressions in the text to arrive at the answer. Based on such logical information, we not only put forward a context extension framework but also propose a data augmentation algorithm. The former extends the context to cover implicit logical expressions following logical equivalence laws. The latter augments literally similar but logically different instances to better capture logical information, especially logical negative and conditional relationships. We conduct experiments on ReClor dataset. The results show that our method achieves the state-of-the-art performance, and both logic-driven context extension framework and data augmentation algorithm can help improve the accuracy. And our multi-model ensemble system is the first to surpass human performance on both EASY set and HARD set of ReClor.
翻译:文本的逻辑推理要求理解文本中的关键逻辑信息,并对这些逻辑信息进行推断。 大规模预先培训的逻辑推理模型主要侧重于文字的字级语义,同时努力捕捉象征性逻辑。 在本文中,我们建议理解文本中的逻辑符号和表达方式,以得出答案。 基于这些逻辑信息,我们不仅提出了一个背景扩展框架,而且还提出了一个数据增强算法。前者扩展了背景,以涵盖逻辑等同法之后的隐含逻辑表达方式。后者在逻辑等同法中增加了在字面上相似但逻辑上不同的实例,以更好地捕捉逻辑信息,特别是逻辑负面和有条件的关系。我们在 ReClor数据集上进行了实验。结果显示,我们的方法达到了最新性性能,而逻辑驱动背景扩展框架和数据增强算法可以帮助提高准确性。我们的多模型共变数系统是第一个超过人类在ESY集和REClor数据集上的性能。