Machine learning recently proved efficient in learning differential equations and dynamical systems from data. However, the data is commonly assumed to originate from a single never-changing system. In contrast, when modeling real-world dynamical processes, the data distribution often shifts due to changes in the underlying system dynamics. Continual learning of these processes aims to rapidly adapt to abrupt system changes without forgetting previous dynamical regimes. This work proposes an approach to continual learning based on reservoir computing, a state-of-the-art method for training recurrent neural networks on complex spatiotemporal dynamical systems. Reservoir computing fixes the recurrent network weights - hence these cannot be forgotten - and only updates linear projection heads to the output. We propose to train multiple competitive prediction heads concurrently. Inspired by neuroscience's predictive coding, only the most predictive heads activate, laterally inhibiting and thus protecting the inactive heads from forgetting induced by interfering parameter updates. We show that this multi-head reservoir minimizes interference and catastrophic forgetting on several dynamical systems, including the Van-der-Pol oscillator, the chaotic Lorenz attractor, and the high-dimensional Lorenz-96 weather model. Our results suggest that reservoir computing is a promising candidate framework for the continual learning of dynamical systems. We provide our code for data generation, method, and comparisons at \url{https://github.com/leonardbereska/multiheadreservoir}.
翻译:在从数据中学习差异方程式和动态系统方面,机器学习最近证明是有效的。然而,数据通常被假定来自一个从未变化的单一系统。相比之下,在模拟现实世界动态过程时,数据分布往往会因基本系统动态的变化而变化。不断学习这些过程的目的是迅速适应突然的系统变化,同时不忘记先前的动态制度。这项工作提议了一种基于储油层计算的持续学习方法,这是一种在复杂的平坦的动态系统中培训经常性神经网络的最先进的方法。再计算修复经常性网络重量,因此不能忘记这些重量,并且只更新输出的线性投影头。我们提议同时培训多个有竞争力的预测头。受神经科学预测性编码的启发,只有最有预测性的头可以激活、后期抑制,从而保护不活动头不会被干扰性参数更新所引发的遗忘。我们展示了这一多头储油层储油层将干扰最小化和灾难性的遗忘于一些动态系统,包括Van-der-Pol 系统、混乱的Lorenz 吸引者,并且只是更新的线性投影头头头头头头头头,我们高维的模型/变数的模型数据系统为我们高维的流的系统提供有希望的流的版本的版本的版本的系统。