Demand forecasting is extremely important in revenue management. After all, it is one of the inputs to an optimisation method which aim is to maximize revenue. Most, if not all, forecasting methods use historical data to forecast the future, disregarding the "why". In this paper, we combine data from multiple sources, including competitor data, pricing, social media, safety and airline reviews. Next, we study five competitor pricing movements that, we hypothesize, affect customer behavior when presented a set of itineraries. Using real airline data for ten different OD-pairs and by means of Extreme Gradient Boosting, we show that customer behavior can be categorized into price-sensitive, schedule-sensitive and comfort ODs. Through a simulation study, we show that this model produces forecasts that result in higher revenue than traditional, time series forecasts.


翻译:需求预测在收入管理中极为重要。 毕竟, 需求预测是对优化方法的投入之一, 其目的在于最大限度地增加收入。 多数预测方法(如果不是全部的话)使用历史数据预测未来, 忽略了“ 原因 ” 。 在本文中, 我们综合了来自多种来源的数据, 包括竞争数据、 定价、 社交媒体、 安全和航空公司审查。 其次, 我们研究5个竞争者定价运动, 当提出一套路线时, 我们虚弱地影响客户行为。 使用10个不同的OD- pair 的真正航空公司数据, 以及极端梯度推进工具, 我们显示客户行为可以分为价格敏感、 计划敏感和舒适的 OD。 通过模拟研究, 我们显示这个模型产生的预测比传统的、 时间序列预测产生更高的收入。

0
下载
关闭预览

相关内容

机器学习(Machine Learning)是一个研究计算学习方法的国际论坛。该杂志发表文章,报告广泛的学习方法应用于各种学习问题的实质性结果。该杂志的特色论文描述研究的问题和方法,应用研究和研究方法的问题。有关学习问题或方法的论文通过实证研究、理论分析或与心理现象的比较提供了坚实的支持。应用论文展示了如何应用学习方法来解决重要的应用问题。研究方法论文改进了机器学习的研究方法。所有的论文都以其他研究人员可以验证或复制的方式描述了支持证据。论文还详细说明了学习的组成部分,并讨论了关于知识表示和性能任务的假设。 官网地址:http://dblp.uni-trier.de/db/journals/ml/
专知会员服务
42+阅读 · 2020年12月18日
专知会员服务
50+阅读 · 2020年12月14日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【推荐】直接未来预测:增强学习监督学习
机器学习研究会
6+阅读 · 2017年11月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】(Keras)LSTM多元时序预测教程
机器学习研究会
24+阅读 · 2017年8月14日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Deep Learning for Energy Markets
Arxiv
10+阅读 · 2019年4月10日
Arxiv
3+阅读 · 2018年3月28日
Arxiv
3+阅读 · 2018年3月13日
Arxiv
3+阅读 · 2018年2月24日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【推荐】直接未来预测:增强学习监督学习
机器学习研究会
6+阅读 · 2017年11月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】(Keras)LSTM多元时序预测教程
机器学习研究会
24+阅读 · 2017年8月14日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
相关论文
Deep Learning for Energy Markets
Arxiv
10+阅读 · 2019年4月10日
Arxiv
3+阅读 · 2018年3月28日
Arxiv
3+阅读 · 2018年3月13日
Arxiv
3+阅读 · 2018年2月24日
Top
微信扫码咨询专知VIP会员