In many fields of science, remarkably comprehensive and realistic computational models are available nowadays. Often, the respective numerical calculations call for the use of powerful supercomputers, and therefore only a limited number of cases can be investigated explicitly. This prevents straightforward approaches to important tasks like uncertainty quantification and sensitivity analysis. As it turns out, this challenge can be overcome via our recently developed sensitivity-driven dimension-adaptive sparse grid interpolation strategy. The method exploits, via adaptivity, the structure of the underlying model (such as lower intrinsic dimensionality and anisotropic coupling of the uncertain inputs) to enable efficient and accurate uncertainty quantification and sensitivity analysis at scale. We demonstrate the efficiency of our approach in the context of fusion research, in a realistic, computationally expensive scenario of turbulent transport in a magnetic confinement device with eight uncertain parameters, reducing the effort by at least two orders of magnitude. In addition, we show that our method intrinsically provides an accurate reduced model that is nine orders of magnitude cheaper than the high-fidelity model. Our approach enables studies previously considered infeasible.
翻译:在许多科学领域,如今可以找到非常全面和现实的计算模型。通常,不同的数字计算要求使用强大的超级计算机,因此只能对数量有限的案例进行明确调查。这妨碍了对不确定性量化和敏感性分析等重要任务采取直截了当的方法。事实证明,这一挑战可以通过我们最近制定的敏感度驱动的维度适应性分散的电网内插战略来克服。这种方法通过适应性,利用基本模型的结构(例如低内在维度和不确定投入的反向交错),以便能够对规模进行高效和准确的不确定性量化和敏感性分析。我们展示了我们的方法在结合研究中的效率,在实际的、计算成本昂贵的八种不确定参数磁性封闭装置中运输动荡的情况下,将努力减少至少两个数量级。此外,我们显示,我们的方法必然提供了精确的减少的模型,其规模比高阻燃性模型低九级。我们的方法使得以前认为不可能进行的研究。