Inferring tie strengths in social networks is an essential task in social network analysis. Common approaches classify the ties as weak and strong ties based on the strong triadic closure (STC). The STC states that if for three nodes, $A$, $B$, and $C$, there are strong ties between $A$ and $B$, as well as $A$ and $C$, there has to be a (weak or strong) tie between $B$ and $C$. So far, most works discuss the STC in static networks. However, modern large-scale social networks are usually highly dynamic, providing user contacts and communications as streams of edge updates. Temporal networks capture these dynamics. To apply the STC to temporal networks, we first generalize the STC and introduce a weighted version such that empirical a priori knowledge given in the form of edge weights is respected by the STC. The weighted STC is hard to compute, and our main contribution is an efficient 2-approximative streaming algorithm for the weighted STC in temporal networks. As a technical contribution, we introduce a fully dynamic 2-approximation for the minimum weight vertex cover problem, which is a crucial component of our streaming algorithm. Our evaluation shows that the weighted STC leads to solutions that capture the a priori knowledge given by the edge weights better than the non-weighted STC. Moreover, we show that our streaming algorithm efficiently approximates the weighted STC in large-scale social networks.


翻译:在社会网络分析中,社会网络的牵线性力量是社会网络分析中的一项基本任务。共同的方法将社会网络的连接归类为基于强烈三重封闭(STC)的强弱关系。STC指出,如果三个节点(A$、B美元和C美元)之间,美元和B美元以及美元和C美元之间有着牢固的联系,那么在社会网络中,必须有一个(弱或强)的(B美元和C美元)联系。迄今为止,大多数工作是在静态网络中讨论STC的。然而,现代大型社会网络通常是高度动态的,提供用户联系和通信作为边际更新的网络流。Temalal 网络捕捉了这些动态。为了对时间网络应用STC的时间网络应用STC,我们首先对STC进行概括,并采用一个加权版本,这样可以让STC尊重以边权重形式提供的经验性知识。加权STC很难计算,而我们的主要贡献是在时间网络中为加权STC提供有效的2级际流流流算算算算法。作为技术贡献的一种非技术贡献,我们通过一种完全动态的平级化的平级化的流程性比例分析方法,我们之前的Stracal-sqmaxmaxmaxmax

0
下载
关闭预览

相关内容

Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年8月9日
Arxiv
93+阅读 · 2021年5月17日
Simplifying Graph Convolutional Networks
Arxiv
12+阅读 · 2019年2月19日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
相关基金
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员