Non-IID dataset and heterogeneous environment of the local clients are regarded as a major issue in Federated Learning (FL), causing a downturn in the convergence without achieving satisfactory performance. In this paper, we propose a novel Label-wise clustering algorithm that guarantees the trainability among geographically dispersed heterogeneous local clients, by selecting only the local models trained with a dataset that approximates into uniformly distributed class labels, which is likely to obtain faster minimization of the loss and increment the accuracy among the FL network. Through conducting experiments on the suggested six common non-IID scenarios, we empirically show that the vanilla FL aggregation model is incapable of gaining robust convergence generating biased pre-trained local models and drifting the local weights to mislead the trainability in the worst case. Moreover, we quantitatively estimate the expected performance of the local models before training, which offers a global server to select the optimal clients, saving additional computational costs. Ultimately, in order to gain resolution of the non-convergence in such non-IID situations, we design clustering algorithms based on local input class labels, accommodating the diversity and assorting clients that could lead the overall system to attain the swift convergence as global training continues. Our paper shows that proposed Label-wise clustering demonstrates prompt and robust convergence compared to other FL algorithms when local training datasets are non-IID or coexist with IID through multiple experiments.


翻译:在联邦学习联合会(FL)中,当地客户的非IID数据集和不同环境被视为一个主要问题,导致趋同率下降,但没有达到令人满意的业绩。在本文中,我们建议采用新的标签式组合算法,确保地域分散的多样化当地客户的可培训性,只选择经过培训的当地模型,其数据集大致为统一分布类标签,这有可能更快地减少损失并增加FL网络的准确性。通过对建议的六种共同非IID情景进行实验,我们从经验上表明,香草FL汇总模型无法取得强有力的趋同,产生偏向性的预先培训的当地模型,并漂移当地重量,以误导最差的案例中的可培训。此外,我们量化地估计了培训前当地模型的预期性能,该模型提供了选择最佳客户的全球服务器,节省了额外的计算费用。最终,通过在非IID情况下解决非兼容性,我们根据当地输入类标签设计了组合算法,适应多样性,同时让客户漂浮地移动当地重量,从而能够通过FIL进行快速趋同。

0
下载
关闭预览

相关内容

最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
86+阅读 · 2020年12月2日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
37+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
6+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
4+阅读 · 2011年12月31日
国家自然科学基金
15+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月17日
Convergence of the Discrete Minimum Energy Path
Arxiv
0+阅读 · 2022年4月15日
VIP会员
相关VIP内容
相关资讯
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
37+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
6+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
4+阅读 · 2011年12月31日
国家自然科学基金
15+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员