Matrix-free techniques play an increasingly important role in large-scale simulations. Schur complement techniques and massively parallel multigrid solvers for second-order elliptic partial differential equations can significantly benefit from reduced memory traffic and consumption. The matrix-free approach often restricts solver components to purely local operations, for instance, the Jacobi- or Gauss--Seidel-Smoothers in multigrid methods. An incomplete LU (ILU) decomposition cannot be calculated from local information and is therefore not amenable to an on-the-fly computation which is typically needed for matrix-free calculations. It generally requires the storage and factorization of a sparse matrix which contradicts the low memory requirements in large scale scenarios. In this work, we propose a matrix-free ILU realization. More precisely, we introduce a memory-efficient, matrix-free ILU(0)-Smoother component for low-order conforming finite elements on tetrahedral hybrid grids. Hybrid grids consist of an unstructured macro-mesh which is subdivided into a structured micro-mesh. The ILU(0) is used for degrees-of-freedom assigned to the interior of macro-tetrahedra. This ILU(0)-Smoother can be used for the efficient matrix-free evaluation of the Steklov-Poincare operator from domain-decomposition methods. After introducing and formally defining our smoother, we investigate its performance on refined macro-tetrahedra. Secondly, the ILU(0)-Smoother on the macro-tetrahedrons is implemented via surrogate matrix polynomials in conjunction with a fast on-the-fly evaluation scheme resulting in an efficient matrix-free algorithm. The polynomial coefficients are obtained by solving a least-squares problem on a small part of the factorized ILU(0) matrices to stay memory efficient. The convergence rates of this smoother with respect to the polynomial order are thoroughly studied.
翻译:无矩阵技术在大规模模拟中发挥着越来越重要的作用。 Schur 补充技术和大规模平行的二阶椭圆部分差异方程式的多格解析器可大大受益于存储流量和消耗量的减少。 无矩阵方法往往将解决方案组件限制在纯本地操作中,例如在多格方法中, Jacobi 或 Gaus-Seidel-Smoothers 的解析器。 不完整的LU (ILU) 分解无法从本地信息中计算出来, 因此不适于在空基计算中通常需要的在空基上进行计算。 这通常需要存储一个与大情景中低存储要求相矛盾的稀释矩阵。 在这项工作中,我们提出一个无矩阵的解析器元化的解析器组件。 混合电网是一个不结构化的宏观流流流(U), 将一个IMLOO 的内流数据元化的内流- IMFIL IML 格式化的内流化分析器, 将一个IMU- mexal- dealal- mexal IMal- deal IMexal- deal- deal- deal- dealial- demo- demodeal- demodeal- demodal- demodal- demoal- demoal- demoal- demodal- demoal demodal- demo- demodal demodal- demodal- demodal- demodal- demodal- demodal- demodal demodal- demodal- demodaldal demodal- demodal- demodal- demodal- demodal- madal- madal- madal- madal madal- madal madaldaldaldaldaldaldaldaldaldaldal- madal madal madal madal madal madal madal madal mas mas madaldaldaldaldaldal mas mas madaldal