Matrix-free techniques play an increasingly important role in large-scale simulations. Schur complement techniques and massively parallel multigrid solvers for second-order elliptic partial differential equations can significantly benefit from reduced memory traffic and consumption. The matrix-free approach often restricts solver components to purely local operations, for instance, the Jacobi- or Gauss--Seidel-Smoothers in multigrid methods. An incomplete LU (ILU) decomposition cannot be calculated from local information and is therefore not amenable to an on-the-fly computation which is typically needed for matrix-free calculations. It generally requires the storage and factorization of a sparse matrix which contradicts the low memory requirements in large scale scenarios. In this work, we propose a matrix-free ILU realization. More precisely, we introduce a memory-efficient, matrix-free ILU(0)-Smoother component for low-order conforming finite elements on tetrahedral hybrid grids. Hybrid grids consist of an unstructured macro-mesh which is subdivided into a structured micro-mesh. The ILU(0) is used for degrees-of-freedom assigned to the interior of macro-tetrahedra. This ILU(0)-Smoother can be used for the efficient matrix-free evaluation of the Steklov-Poincare operator from domain-decomposition methods. After introducing and formally defining our smoother, we investigate its performance on refined macro-tetrahedra. Secondly, the ILU(0)-Smoother on the macro-tetrahedrons is implemented via surrogate matrix polynomials in conjunction with a fast on-the-fly evaluation scheme resulting in an efficient matrix-free algorithm. The polynomial coefficients are obtained by solving a least-squares problem on a small part of the factorized ILU(0) matrices to stay memory efficient. The convergence rates of this smoother with respect to the polynomial order are thoroughly studied.


翻译:无矩阵技术在大规模模拟中发挥着越来越重要的作用。 Schur 补充技术和大规模平行的二阶椭圆部分差异方程式的多格解析器可大大受益于存储流量和消耗量的减少。 无矩阵方法往往将解决方案组件限制在纯本地操作中,例如在多格方法中, Jacobi 或 Gaus-Seidel-Smoothers 的解析器。 不完整的LU (ILU) 分解无法从本地信息中计算出来, 因此不适于在空基计算中通常需要的在空基上进行计算。 这通常需要存储一个与大情景中低存储要求相矛盾的稀释矩阵。 在这项工作中,我们提出一个无矩阵的解析器元化的解析器组件。 混合电网是一个不结构化的宏观流流流(U), 将一个IMLOO 的内流数据元化的内流- IMFIL IML 格式化的内流化分析器, 将一个IMU- mexal- dealal- mexal IMal- deal IMexal- deal- deal- deal- dealial- demo- demodeal- demodeal- demodal- demodal- demoal- demoal- demoal- demodal- demoal demodal- demo- demodal demodal- demodal- demodal- demodal- demodal- demodal- demodal demodal- demodal- demodaldal demodal- demodal- demodal- demodal- demodal- madal- madal- madal- madal madal- madal madaldaldaldaldaldaldaldaldaldaldal- madal madal madal madal madal madal madal madal mas mas madaldaldaldaldaldal mas mas madaldal

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
专知会员服务
50+阅读 · 2020年12月14日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员