We propose using a two-layered deployment of machine learning models to prevent adversarial attacks. The first layer determines whether the data was tampered, while the second layer solves a domain-specific problem. We explore three sets of features and three dataset variations to train machine learning models. Our results show clustering algorithms achieved promising results. In particular, we consider the best results were obtained by applying the DBSCAN algorithm to the structured structural similarity index measure computed between the images and a white reference image.
翻译:我们建议使用两层的机器学习模型来防止对抗性攻击。 第一层决定数据是否被篡改, 而第二层解决了特定领域的问题。 我们探索了三组特征和三个数据集的变异来训练机器学习模型。 我们的结果表明组合算法取得了有希望的结果。 特别是, 我们认为最佳结果是通过将DBSCAN算法应用到在图像和白色参考图像之间计算的结构结构相似指数测量中取得的。